1
|
Georges A and M Das J: Traumatic Brain
Injury. In: StatPearls [Internet]. StatPearls Publishing, Treasure
Island, FL, 2021.
|
2
|
Nguyen R, Fiest KM, McChesney J, Kwon CS,
Jette N, Frolkis AD, Atta C, Mah S, Dhaliwal H, Reid A, et al: The
International incidence of traumatic brain injury: A systematic
review and meta-analysis. Can J Neurol Sci. 43:774–785.
2016.PubMed/NCBI View Article : Google Scholar
|
3
|
Capizzi A, Woo J and Verduzco-Gutierrez M:
Traumatic brain injury: An overview of epidemiology,
pathophysiology and medical management. Med Clin North Am.
104:213–238. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Sivandzade F, Alqahtani F and Cucullo L:
Traumatic brain injury and blood-brain barrier (BBB): Underlying
pathophysiological mechanisms and the influence of cigarette
smoking as a premorbid condition. Int J Mol Sci.
21(2721)2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen
S, Lenahan C, Zhang JH, Shao A and Zhang J: Programmed Cell Deaths
and Potential Crosstalk With Blood-Brain Barrier Dysfunction After
Hemorrhagic Stroke. Front Cell Neurosci. 14(68)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Daneman R and Prat A: The blood-brain
barrier. Cold Spring Harb Perspect Biol. 7(a020412)2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Bhowmick S, D'Mello V, Caruso D,
Wallerstein A and Abdul-Muneer PM: Impairment of
pericyte-endothelium crosstalk leads to blood-brain barrier
dysfunction following traumatic brain injury. Exp Neurol.
317:260–270. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Jha RM, Kochanek PM and Simard JM:
Pathophysiology and treatment of cerebral edema in traumatic brain
injury. Neuropharmacology. 145(Pt B):230–246. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Blixt J, Svensson M, Gunnarson E and
Wanecek M: Aquaporins and blood-brain barrier permeability in early
edema development after traumatic brain injury. Brain Res.
1611:18–28. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Rempe RG, Hartz AMS and Bauer B: Matrix
metalloproteinases in the brain and blood-brain barrier: Versatile
breakers and makers. J Cereb Blood Flow Metab. 36:1481–1507.
2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Zhang S, An Q, Wang T, Gao S and Zhou G:
Autophagy- and MMP-2/9-mediated Reduction and Redistribution of
ZO-1 Contribute to Hyperglycemia-increased Blood-brain barrier
permeability during early reperfusion in stroke. Neuroscience.
377:126–137. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Dang B, Duan X, Wang Z, He W and Chen G: A
therapeutic target of cerebral hemorrhagic stroke: Matrix
metalloproteinase-9. Curr Drug Targets. 18:1358–1366.
2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhang HT, Zhang P, Gao Y, Li CL, Wang HJ,
Chen LC, Feng Y, Li RY, Li YL and Jiang CL: Early VEGF inhibition
attenuates blood-brain barrier disruption in ischemic rat brains by
regulating the expression of MMPs. Mol Med Rep. 15:57–64.
2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Ma C, Zhou J, Xu X, Wang L, Qin S, Hu C,
Nie L and Tu Y: The construction of a radiation-induced brain
injury model and preliminary study on the effect of human
recombinant endostatin in treating radiation-induced brain injury.
Med Sci Monit. 25:9392–9401. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Kimura R, Nakase H, Tamaki R and Sakaki T:
Vascular endothelial growth factor antagonist reduces brain edema
formation and venous infarction. Stroke. 36:1259–1263.
2005.PubMed/NCBI View Article : Google Scholar
|
16
|
Deng Z, Zhou L, Wang Y, Liao S, Huang Y,
Shan Y, Tan S, Zeng Q, Peng L, Huang H and Lu Z: Astrocyte-derived
VEGF increases cerebral microvascular permeability under high salt
conditions. Aging (Albany NY). 12:11781–11793. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Pishko GL, Muldoon LL, Pagel MA, Schwartz
DL and Neuwelt EA: Vascular endothelial growth factor blockade
alters magnetic resonance imaging biomarkers of vascular function
and decreases barrier permeability in a rat model of lung cancer
brain metastasis. Fluids Barriers CNS. 12(5)2015.PubMed/NCBI View Article : Google Scholar
|
18
|
National Research Council (US) Institute
for Laboratory Animal Research: Guide for the Care and Use of
Laboratory Animals. National Academies Press (US), Washington, DC,
1996.
|
19
|
Gao F, Li D, Rui Q, Ni H, Liu H, Jiang F,
Tao L, Gao R and Dang B: Annexin A7 levels increase in rats with
traumatic brain injury and promote secondary brain injury. Front
Neurosci. 12(357)2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Xu CS, Wang ZF, Dai LM, Chu SH, Gong LL,
Yang MH and Li ZQ: Induction of proline-rich tyrosine kinase 2
activation-mediated C6 glioma cell invasion after anti-vascular
endothelial growth factor therapy. J Transl Med.
12(148)2014.PubMed/NCBI View Article : Google Scholar
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
22
|
Gong Y, Wu M, Shen J, Tang J, Li J, Xu J,
Dang B and Chen G: Inhibition of the NKCC1/NF-κB signaling pathway
decreases inflammation and improves brain edema and nerve cell
apoptosis in an SBI rat model. Front Mol Neurosci.
14(641993)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Feng D, Wang B, Wang L, Abraham N, Tao K,
Huang L, Shi W, Dong Y and Qu Y: Pre-ischemia melatonin treatment
alleviated acute neuronal injury after ischemic stroke by
inhibiting endoplasmic reticulum stress-dependent autophagy via
PERK and IRE1 signalings. J Pineal Res. 62(e12395)2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Garcia JH, Wagner S, Liu KF and Hu XJ:
Neurological deficit and extent of neuronal necrosis attributable
to middle cerebral artery occlusion in rats. Statistical
validation. Stroke. 26:627–634; discussion 635. 1995.PubMed/NCBI View Article : Google Scholar
|
25
|
Gong Y, Wu M, Gao F, Shi M, Gu H, Gao R,
Dang BQ and Chen G: Inhibition of the pSPAK/pNKCC1 signaling
pathway protects the bloodbrain barrier and reduces neuronal
apoptosis in a rat model of surgical brain injury. Mol Med Rep.
24(717)2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhang ZG, Zhang L, Jiang Q, Zhang R,
Davies K, Powers C, Bruggen Nv and Chopp M: VEGF enhances
angiogenesis and promotes blood-brain barrier leakage in the
ischemic brain. J Clin Invest. 106:829–838. 2000.PubMed/NCBI View
Article : Google Scholar
|
27
|
Garcia J, Hurwitz HI, Sandler AB, Miles D,
Coleman RL, Deurloo R and Chinot OL: Bevacizumab (Avastin(R)) in
cancer treatment: A review of 15 years of clinical experience and
future outlook. Cancer Treat Rev. 86(102017)2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhuang H, Shi S, Yuan Z and Chang JY:
Bevacizumab treatment for radiation brain necrosis: Mechanism,
efficacy and issues. Mol Cancer. 18(21)2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Voss M, Wenger KJ, Fokas E, Forster MT,
Steinbach JP and Ronellenfitsch MW: Single-shot bevacizumab for
cerebral radiation injury. BMC Neurol. 21(77)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhu J, Li X, Yin J, Hu Y, Gu Y and Pan S:
Glycocalyx degradation leads to blood-brain barrier dysfunction and
brain edema after asphyxia cardiac arrest in rats. J Cereb Blood
Flow Metab. 38:1979–1992. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Kim KA, Kim D, Kim JH, Shin YJ, Kim ES,
Akram M, Kim EH, Majid A, Baek SH and Bae ON: Autophagy-mediated
occludin degradation contributes to blood-brain barrier disruption
during ischemia in bEnd.3 brain endothelial cells and rat ischemic
stroke models. Fluids Barriers CNS. 17(21)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhang Y, Li X, Qiao S, Yang D, Li Z, Xu J,
Li W, Su L and Liu W: Occludin degradation makes brain
microvascular endothelial cells more vulnerable to reperfusion
injury in vitro. J Neurochem. 156:352–366. 2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Lee WH, Warrington JP, Sonntag WE and Lee
YW: Irradiation alters MMP-2/TIMP-2 system and collagen type IV
degradation in brain. Int J Radiat Oncol Biol Phys. 82:1559–1566.
2012.PubMed/NCBI View Article : Google Scholar
|
34
|
Cottarelli A, Corada M, Beznoussenko GV,
Mironov AA, Globisch MA, Biswas S, Huang H, Dimberg A, Magnusson
PU, Agalliu D, et al: Fgfbp1 promotes blood-brain barrier
development by regulating collagen IV deposition and maintaining
Wnt/β-catenin signaling. Development. 147(dev185140)2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Rempe RG, Hartz AMS, Soldner ELB, Sokola
BS, Alluri SR, Abner EL, Kryscio RJ, Pekcec A, Schlichtiger J and
Bauer B: Matrix metalloproteinase-mediated blood-brain barrier
dysfunction in epilepsy. J Neurosci. 38:4301–4315. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Wu MY, Gao F, Yang XM, Qin X, Chen GZ, Li
D, Dang BQ and Chen G: Matrix metalloproteinase-9 regulates the
blood brain barrier via the hedgehog pathway in a rat model of
traumatic brain injury. Brain Res. 1727(146553)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Alluri H, Wiggins-Dohlvik K, Davis ML,
Huang JH and Tharakan B: Blood-brain barrier dysfunction following
traumatic brain injury. Metab Brain Dis. 30:1093–1104.
2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Bergsland E and Dickler MN: Maximizing the
potential of bevacizumab in cancer treatment. Oncologist. 9 (Suppl
1):S36–S42. 2004.PubMed/NCBI View Article : Google Scholar
|