Ferroptosis and renal fibrosis: A new target for the future (Review)
- Authors:
- Han Yin Zhang
- Meng Cheng
- Lei Zhang
- Yi Ping Wang
-
Affiliations: Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China - Published online on: November 17, 2022 https://doi.org/10.3892/etm.2022.11712
- Article Number: 13
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhang X and Li X: Abnormal iron and lipid metabolism mediated ferroptosis in kidney diseases and its therapeutic potential. Metabolites. 12(58)2022.PubMed/NCBI View Article : Google Scholar | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar | |
Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014.PubMed/NCBI View Article : Google Scholar | |
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017.PubMed/NCBI View Article : Google Scholar | |
Lu X, Rudemiller NP, Ren J, Wen Y, Yang B, Griffiths R, Privratsky JR, Madan B, Virshup DM and Crowley SD: Opposing actions of renal tubular- and myeloid-derived porcupine in obstruction-induced kidney fibrosis. Kidney Int. 96:1308–1319. 2019.PubMed/NCBI View Article : Google Scholar | |
Humphreys BD: Mechanisms of renal fibrosis. Annu Rev Physiol. 80:309–326. 2018.PubMed/NCBI View Article : Google Scholar | |
Dolma S, Lessnick SL, Hahn WC and Stockwell BR: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 3:285–296. 2003.PubMed/NCBI View Article : Google Scholar | |
Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019.PubMed/NCBI View Article : Google Scholar | |
Lee YS, Lee DH, Choudry HA, Bartlett DL and Lee YJ: Ferroptosis-induced endoplasmic reticulum stress: Cross-talk between ferroptosis and apoptosis. Mol Cancer Res. 16:1073–1076. 2018.PubMed/NCBI View Article : Google Scholar | |
Hirayama T, Miki A and Nagasawa H: Organelle-specific analysis of labile Fe(ii) during ferroptosis by using a cocktail of various colour organelle-targeted fluorescent probes. Metallomics. 11:111–117. 2019.PubMed/NCBI View Article : Google Scholar | |
Lin X, Ping J, Wen Y and Wu Y: The mechanism of ferroptosis and applications in tumor treatment. Front Pharmacol. 11(1061)2020.PubMed/NCBI View Article : Google Scholar | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017.PubMed/NCBI View Article : Google Scholar | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11(88)2020.PubMed/NCBI View Article : Google Scholar | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019.PubMed/NCBI View Article : Google Scholar | |
Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31197. 2020.PubMed/NCBI View Article : Google Scholar | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017.PubMed/NCBI View Article : Google Scholar | |
Wen J, Chen H, Ren Z, Zhang P, Chen J and Jiang S: Ultrasmall iron oxide nanoparticles induced ferroptosis via beclin1/ATG5-dependent autophagy pathway. Nano Converg. 8(10)2021.PubMed/NCBI View Article : Google Scholar | |
Galaris D, Barbouti A and Pantopoulos K: Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res. 1866(118535)2019.PubMed/NCBI View Article : Google Scholar | |
Wang S, Luo J, Zhang Z, Dong D, Shen Y, Fang Y, Hu L, Liu M, Dai C, Peng S, et al: Iron and magnetic: New research direction of the ferroptosis-based cancer therapy. Am J Cancer Res. 8:1933–1946. 2018.PubMed/NCBI | |
Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015.PubMed/NCBI View Article : Google Scholar | |
Dai C, Chen X, Li J, Comish P, Kang R and Tang D: Transcription factors in ferroptotic cell death. Cancer Gene Ther. 27:645–656. 2020.PubMed/NCBI View Article : Google Scholar | |
Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, et al: The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 18:522–555. 2013.PubMed/NCBI View Article : Google Scholar | |
Bannai S: Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem. 261:2256–2263. 1986.PubMed/NCBI | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015.PubMed/NCBI View Article : Google Scholar | |
Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9:1673–1685. 2019.PubMed/NCBI View Article : Google Scholar | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021.PubMed/NCBI View Article : Google Scholar | |
Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, et al: Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem. 280:37423–37429. 2005.PubMed/NCBI View Article : Google Scholar | |
Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, et al: Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 368:85–89. 2020.PubMed/NCBI View Article : Google Scholar | |
Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH and Chang WC: Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 416:124–137. 2018.PubMed/NCBI View Article : Google Scholar | |
Gan B: Mitochondrial regulation of ferroptosis. J Cell Biol. 220(e202105043)2021.PubMed/NCBI View Article : Google Scholar | |
Kuhn H, Banthiya S and van Leyen K: Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta. 1851:308–330. 2015.PubMed/NCBI View Article : Google Scholar | |
Qureshi T, Sørensen C, Berghuis P, Jensen V, Dobszay MB, Farkas T, Dalen KT, Guo C, Hassel B, Utheim TP, et al: The glutamine transporter Slc38a1 regulates GABAergic neurotransmission and synaptic plasticity. Cereb Cortex. 29:5166–5179. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, Li Z, Pu L, Zhao X, Zhang T and Dong Z: lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY). 12:9085–9102. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen X, Yu C, Kang R and Tang D: Iron metabolism in ferroptosis. Front Cell Dev Biol. 8(590226)2020.PubMed/NCBI View Article : Google Scholar | |
Doll S and Conrad M: Iron and ferroptosis: A still ill-defined liaison. IUBMB Life. 69:423–434. 2017.PubMed/NCBI View Article : Google Scholar | |
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021.PubMed/NCBI View Article : Google Scholar | |
Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 551:639–643. 2017.PubMed/NCBI View Article : Google Scholar | |
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen PH, Wu J, Ding CC, Lin CC, Pan S, Bossa N, Xu Y, Yang WH, Mathey-Prevot B and Chi JT: Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 27:1008–1022. 2020.PubMed/NCBI View Article : Google Scholar | |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015.PubMed/NCBI View Article : Google Scholar | |
Mazure NM: VDAC in cancer. Biochim Biophys Acta Bioenerg. 1858:665–673. 2017.PubMed/NCBI View Article : Google Scholar | |
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:864–868. 2007.PubMed/NCBI View Article : Google Scholar | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019.PubMed/NCBI View Article : Google Scholar | |
McBean GJ: The transsulfuration pathway: A source of cysteine for glutathione in astrocytes. Amino Acids. 42:199–205. 2012.PubMed/NCBI View Article : Google Scholar | |
Sedeek M, Nasrallah R, Touyz RM and Hébert RL: NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe. J Am Soc Nephrol. 24:1512–1518. 2013.PubMed/NCBI View Article : Google Scholar | |
Guerrero-Hue M, García-Caballero C, Palomino-Antolín A, Rubio-Navarro A, Vázquez-Carballo C, Herencia C, Martín-Sanchez D, Farré-Alins V, Egea J, Cannata P, et al: Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J. 33:8961–8975. 2019.PubMed/NCBI View Article : Google Scholar | |
Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S and Dong Z: Regulated cell death in AKI. J Am Soc Nephrol. 25:2689–2701. 2014.PubMed/NCBI View Article : Google Scholar | |
Su H, Wan C, Song A, Qiu Y, Xiong W and Zhang C: Oxidative stress and renal fibrosis: Mechanisms and therapies. Adv Exp Med Biol. 1165:585–604. 2019.PubMed/NCBI View Article : Google Scholar | |
Li X, Zou Y, Xing J, Fu YY, Wang KY, Wan PZ and Zhai XY: Pretreatment with roxadustat (FG-4592) attenuates folic acid-induced kidney injury through antiferroptosis via Akt/GSK-3 β/Nrf2 pathway. Oxid Med Cell Longev. 2020(6286984)2020.PubMed/NCBI View Article : Google Scholar | |
Ide S, Kobayashi Y, Ide K, Strausser SA, Abe K, Herbek S, O'Brien LL, Crowley SD, Barisoni L, Tata A, et al: Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. Elife. 10(e68603)2021.PubMed/NCBI View Article : Google Scholar | |
Feng X, Wang S, Sun Z, Dong H, Yu H, Huang M and Gao X: Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice. Front Endocrinol (Lausanne). 12(626390)2021.PubMed/NCBI View Article : Google Scholar | |
Liu B, Deng Q, Zhang L and Zhu W: Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway. Mol Med Rep. 22:4655–4662. 2020.PubMed/NCBI View Article : Google Scholar | |
Lo YH, Yang SF, Cheng CC, Hsu KC, Chen YS, Chen YY, Wang CW, Guan SS and Wu CT: Nobiletin alleviates ferroptosis-associated renal injury, inflammation, and fibrosis in a unilateral ureteral obstruction mouse model. Biomedicines. 10(595)2022.PubMed/NCBI View Article : Google Scholar | |
Yang L and Xia H: TRIM proteins in inflammation: From expression to emerging regulatory mechanisms. Inflammation. 44:811–820. 2021.PubMed/NCBI View Article : Google Scholar | |
Bilgin S, Kurtkulagi O, Atak BM, Duman TT, Kahveci G, Khalid A and Aktas G: Does C-reactive protein to serum albumin ratio correlate with diabEtic nephropathy in patients with Type 2 dIabetes MEllitus? The CARE TIME study. Prim Care Diabetes. 15:1071–1074. 2021.PubMed/NCBI View Article : Google Scholar | |
Jung SW, Kim DJ, Kim YG, Moon JY, Jeong KH and Lee SH: Renal aging resembles a continuum between normal and diseased kidneys that potentiates inflammatory response to injury. J Gerontol A Biol Sci Med Sci. 76:385–392. 2021.PubMed/NCBI View Article : Google Scholar | |
Kocak MZ, Aktas G, Duman TT, Atak BM, Kurtkulagi O, Tekce H, Bilgin S and Alaca B: Monocyte lymphocyte ratio as a predictor of diabetic kidney injury in type 2 diabetes mellitus; The MADKID study. J Diabetes Metab Disord. 19:997–1002. 2020.PubMed/NCBI View Article : Google Scholar | |
Musiał K and Zwolińska D: New markers of cell migration and inflammation in children with chronic kidney disease. Biomarkers. 24:295–302. 2019.PubMed/NCBI View Article : Google Scholar | |
Kocak MZ, Aktas G, Atak BM, Duman TT, Yis OM, Erkus E and Savli H: Is neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur J Clin Invest. 50(e13206)2020.PubMed/NCBI View Article : Google Scholar | |
Kin Tekce B, Tekce H, Aktas G and Sit M: Evaluation of the urinary kidney injury molecule-1 levels in patients with diabetic nephropathy. Clin Invest Med. 37:E377–E383. 2014.PubMed/NCBI View Article : Google Scholar | |
Tekce H, Tekce BK, Aktas G, Alcelik A and Sengul E: Serum omentin-1 levels in diabetic and nondiabetic patients with chronic kidney disease. Exp Clin Endocrinol Diabetes. 122:451–456. 2014.PubMed/NCBI View Article : Google Scholar | |
Sakai K, Nozaki Y, Murao Y, Yano T, Ri J, Niki K, Kinoshita K, Funauchi M and Matsumura I: Protective effect and mechanism of IL-10 on renal ischemia-reperfusion injury. Lab Invest. 99:671–683. 2019.PubMed/NCBI View Article : Google Scholar | |
Black LM, Lever JM and Agarwal A: Renal inflammation and fibrosis: A double-edged sword. J Histochem Cytochem. 67:663–681. 2019.PubMed/NCBI View Article : Google Scholar | |
Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019.PubMed/NCBI View Article : Google Scholar | |
Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ and Lan HY: Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 7(e2495)2016.PubMed/NCBI View Article : Google Scholar | |
Wei J, Xu Z and Yan X: The role of the macrophage-to-myofibroblast transition in renal fibrosis. Front Immunol. 13(934377)2022.PubMed/NCBI View Article : Google Scholar | |
Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, et al: Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 21:37–46. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu BC, Tang TT, Lv LL and Lan HY: Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 93:568–579. 2018.PubMed/NCBI View Article : Google Scholar | |
Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019.PubMed/NCBI View Article : Google Scholar | |
Von Mässenhausen A, Tonnus W and Linkermann A: Cell death pathways drive necroinflammation during acute kidney injury. Nephron. 140:144–147. 2018.PubMed/NCBI View Article : Google Scholar | |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014.PubMed/NCBI View Article : Google Scholar | |
Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, Ruiz Ortega M, Egido J, Linkermann A, Ortiz A and Sanz AB: Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 28:218–229. 2017.PubMed/NCBI View Article : Google Scholar | |
Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018.PubMed/NCBI View Article : Google Scholar | |
Ha le M, Que do TN, Huyen do TT, Long PQ and Dat NT: Toxicity, analgesic and anti-inflammatory activities of tectorigenin. Immunopharmacol Immunotoxicol. 35:336–340. 2013.PubMed/NCBI View Article : Google Scholar | |
Lee HU, Bae EA and Kim DH: Hepatoprotective effect of tectoridin and tectorigenin on tert-butyl hyperoxide-induced liver injury. J Pharmacol Sci. 97:541–544. 2005.PubMed/NCBI View Article : Google Scholar | |
Pan CH, Kim ES, Jung SH, Nho CW and Lee JK: Tectorigenin inhibits IFN-gamma/LPS-induced inflammatory responses in murine macrophage RAW 264.7 cells. Arch Pharm Res. 31:1447–1456. 2008.PubMed/NCBI View Article : Google Scholar | |
Li J, Yang J, Zhu B, Fan J, Hu Q and Wang L: Tectorigenin protects against unilateral ureteral obstruction by inhibiting Smad3-mediated ferroptosis and fibrosis. Phytother Res. 36:475–487. 2022.PubMed/NCBI View Article : Google Scholar | |
Xie J, Ye Z, Li L, Xia Y, Yuan R, Ruan Y and Zhou X: Ferrostatin-1 alleviates oxalate-induced renal tubular epithelial cell injury, fibrosis and calcium oxalate stone formation by inhibiting ferroptosis. Mol Med Rep. 26(256)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W, Dai G, He Y and Chen Z: Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis. 12(843)2021.PubMed/NCBI View Article : Google Scholar | |
Luo Y, Chen H, Liu H, Jia W, Yan J, Ding W, Zhang Y, Xiao Z and Zhu Z: Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice. Int J Clin Exp Pathol. 13:2041–2049. 2020.PubMed/NCBI | |
Yang L, Guo J, Yu N, Liu Y, Song H, Niu J and Gu Y: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci. 261(118487)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F and Tong X: Signaling pathways involved in diabetic renal fibrosis. Front Cell Dev Biol. 9(696542)2021.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C, Cui X, Yang H, Gao X and Zhang D: Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol. 888(173574)2020.PubMed/NCBI View Article : Google Scholar | |
Zhou L, Xue X, Hou Q and Dai C: Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis (Basel). 8:57–71. 2021.PubMed/NCBI View Article : Google Scholar | |
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F and Zheng S: Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 14:2083–2103. 2018.PubMed/NCBI View Article : Google Scholar | |
Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM and Dong Z: Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy. 12:976–998. 2016.PubMed/NCBI View Article : Google Scholar | |
Li W, Feng G, Gauthier JM, Lokshina I, Higashikubo R, Evans S, Liu X, Hassan A, Tanaka S, Cicka M, et al: Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 129:2293–2304. 2019.PubMed/NCBI View Article : Google Scholar | |
Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI and Cater MA: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 14:100–115. 2018.PubMed/NCBI View Article : Google Scholar | |
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang J, Wang Y, Liu Y, Cai X, Huang X, Fu W, Wang L, Qiu L, Li J and Sun L: Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov. 8(127)2022.PubMed/NCBI View Article : Google Scholar |