1
|
Fearon KCH: Cancer cachexia: Developing
multimodal therapy for a multidimensional problem. Eur J Cancer.
44:1124–1132. 2008.PubMed/NCBI View Article : Google Scholar
|
2
|
Roeland EJ, Bohlke K, Baracos VE, Bruera
E, Del Fabbro E, Dixon S, Fallon M, Herrstedt J, Lau H, Platek M,
et al: Management of cancer cachexia: ASCO guideline. J Clin Oncol.
38:2438–2453. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Baracos VE, Martin L, Korc M, Guttridge DC
and Fearon KCH: Cancer-associated cachexia. Nat Rev Dis Primers.
4(17105)2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Coletti D: Chemotherapy-induced muscle
wasting: An update. Eur J Transl Myol. 28(7587)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Siddiqui JA, Pothuraju R, Jain M, Batra SK
and Nasser MW: Advances in cancer cachexia: Intersection between
affected organs, mediators, and pharmacological interventions.
Biochim Biophys Acta Rev Cancer. 1873(188359)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Argilés JM, Busquets S, Stemmler B and
López-Soriano FJ: Cancer cachexia: Understanding the molecular
basis. Nat Rev Cancer. 14:754–762. 2014.PubMed/NCBI View
Article : Google Scholar
|
7
|
Fearon K, Arends J and Baracos V:
Understanding the mechanisms and treatment options in cancer
cachexia. Nat Rev Clin Oncol. 10:90–99. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhu X, Callahan MF, Gruber KA, Szumowski M
and Marks DL: Melanocortin-4 receptor antagonist TCMCB07
ameliorates cancer- and chronic kidney disease-associated cachexia.
J Clin Invest. 130:4921–4934. 2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Lee MW, Lee M and Oh KJ: Adipose
tissue-derived signatures for obesity and type 2 diabetes:
Adipokines, batokines and MicroRNAs. J Clin Med.
8(854)2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Chouchani ET and Kajimura S: Metabolic
adaptation and maladaptation in adipose tissue. Nat Metab.
1:189–200. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Murphy RA, Wilke MS, Perrine M, Pawlowicz
M, Mourtzakis M, Lieffers JR, Maneshgar M, Bruera E, Clandinin MT,
Baracos VE and Mazurak VC: Loss of adipose tissue and plasma
phospholipids: Relationship to survival in advanced cancer
patients. Clin Nutr. 29:482–487. 2010.PubMed/NCBI View Article : Google Scholar
|
12
|
Liu H, Luo J, Guillory B, Chen JA, Zang P,
Yoeli JK, Hernandez Y, Lee II, Anderson B, Storie M, et al: Ghrelin
ameliorates tumor-induced adipose tissue atrophy and inflammation
via Ghrelin receptor-dependent and -independent pathways.
Oncotarget. 11:3286–3302. 2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Ding Z, Sun D, Han J, Shen L, Yang F, Sah
S, Sui X and Wu G: Novel noncoding RNA CircPTK2 regulates lipolysis
and adipogenesis in cachexia. Mol Metab. 53(101310)2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Mantovani G, Macciò A, Esu S, Lai P,
Santona MC, Massa E, Dessì D, Melis GB and Del Giacco GS:
Medroxyprogesterone acetate reduces the in vitro production of
cytokines and serotonin involved in anorexia/cachexia and emesis by
peripheral blood mononuclear cells of cancer patients. Eur J
Cancer. 33:602–607. 1997.PubMed/NCBI View Article : Google Scholar
|
15
|
Batista ML Jr, Peres SB, McDonald ME,
Alcantara PSM, Olivan M, Otoch JP, Farmer SR and Seelaender M:
Adipose tissue inflammation and cancer cachexia: Possible role of
nuclear transcription factors. Cytokine. 57:9–16. 2012.PubMed/NCBI View Article : Google Scholar
|
16
|
Argilés JM, Stemmler B, López-Soriano FJ
and Busquets S: Inter-tissue communication in cancer cachexia. Nat
Rev Endocrinol. 15:9–20. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Bruera E, Ernst S, Hagen N, Spachynski K,
Belzile M, Hanson J, Summers N, Brown B, Dulude H and Gallant G:
Effectiveness of megestrol acetate in patients with advanced
cancer: A randomized, double-blind, crossover study. Cancer Prev
Control. 2:74–78. 1998.PubMed/NCBI
|
18
|
Greig CA, Johns N, Gray C, MacDonald A,
Stephens NA, Skipworth RJ, Fallon M, Wall L, Fox GM and Fearon KC:
Phase I/II trial of formoterol fumarate combined with megestrol
acetate in cachectic patients with advanced malignancy. Support
Care Cancer. 22:1269–1275. 2014.PubMed/NCBI View
Article : Google Scholar
|
19
|
Ruiz Garcia V, López-Briz E, Carbonell
Sanchis R, Gonzalvez Perales JL and Bort-Martí S: Megestrol acetate
for treatment of anorexia-cachexia syndrome. Cochrane Database Syst
Rev: Mar 28, 2013 (Epub ahead of print).
|
20
|
Mantovani G, Macciò A, Lai P, Massa E,
Ghiani M and Santona MC: Cytokine activity in cancer-related
anorexia/cachexia: Role of megestrol acetate and
medroxyprogesterone acetate. Semin Oncol. 25 (Suppl 6):S45–S52.
1998.PubMed/NCBI
|
21
|
Loprinzi CL, Kugler JW, Sloan JA,
Mailliard JA, Krook JE, Wilwerding MB, Rowland KM Jr, Camoriano JK,
Novotny PJ and Christensen BJ: Randomized comparison of megestrol
acetate versus dexamethasone versus fluoxymesterone for the
treatment of cancer anorexia/cachexia. J Clin Oncol. 17:3299–3306.
1999.PubMed/NCBI View Article : Google Scholar
|
22
|
House L, Seminerio MJ, Mirkov S, Ramirez
J, Skor M, Sachleben JR, Isikbay M, Singhal H, Greene GL, Vander
Griend D, et al: Metabolism of megestrol acetate in vitro and the
role of oxidative metabolites. Xenobiotica. 48:973–983.
2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Cao C, Zhou JY, Xie SW, Guo XJ, Li GT,
Gong YJ, Yang WJ, Li Z, Zhong RH, Shao HH and Zhu Y: Metformin
enhances nomegestrol acetate suppressing growth of endometrial
cancer cells and may correlate to downregulating mTOR activity in
vitro and in vivo. Int J Mol Sci. 20(3308)2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Ruan X, Seeger H and Mueck AO: The
pharmacology of nomegestrol acetate. Maturitas. 71:345–353.
2012.PubMed/NCBI View Article : Google Scholar
|
25
|
Penna F, Busquets S and Argilés JM:
Experimental cancer cachexia: Evolving strategies for getting
closer to the human scenario. Semin Cell Dev Biol. 54:20–27.
2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Conte E, Camerino GM, Mele A, De Bellis M,
Pierno S, Rana F, Fonzino A, Caloiero R, Rizzi L, Bresciani E, et
al: Growth hormone secretagogues prevent dysregulation of skeletal
muscle calcium homeostasis in a rat model of cisplatin-induced
cachexia. J Cachexia Sarcopenia Muscle. 8:386–404. 2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Sirago G, Conte E, Fracasso F, Cormio A,
Fehrentz JA, Martinez J, Musicco C, Camerino GM, Fonzino A, Rizzi
L, et al: Growth hormone secretagogues hexarelin and JMV2894
protect skeletal muscle from mitochondrial damages in a rat model
of cisplatin-induced cachexia. Sci Rep. 7(13017)2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Garcia JM, Scherer T, Chen JA, Guillory B,
Nassif A, Papusha V, Smiechowska J, Asnicar M, Buettner C and Smith
RG: Inhibition of cisplatin-induced lipid catabolism and weight
loss by ghrelin in male mice. Endocrinology. 154:3118–3129.
2013.PubMed/NCBI View Article : Google Scholar
|
29
|
Vojtek M, Gonçalves-Monteiro S, Pinto E,
Kalivodová S, Almeida A, Marques MPM, Batista de Carvalho ALM,
Martins CB, Mota-Filipe H, Ferreira IMPLVO and Diniz C: Preclinical
pharmacokinetics and biodistribution of anticancer dinuclear
palladium(II)-spermine complex (Pd2Spm) in mice.
Pharmaceuticals (Basel). 14(173)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Conte E, Bresciani E, Rizzi L, Cappellari
O, De Luca A, Torsello A and Liantonio A: Cisplatin-induced
skeletal muscle dysfunction: Mechanisms and counteracting
therapeutic strategies. Int J Mol Sci. 21(1242)2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Malik NM, Moore GBT, Smith G, Liu YL,
Sanger GJ and Andrews PLR: Behavioural and hypothalamic molecular
effects of the anti-cancer agent cisplatin in the rat: A model of
chemotherapy-related malaise? Pharmacol Biochem Behav. 83:9–20.
2006.PubMed/NCBI View Article : Google Scholar
|
32
|
Brierley DI, Harman JR, Giallourou N,
Leishman E, Roashan AE, Mellows BAD, Bradshaw HB, Swann JR, Patel
K, Whalley BJ and Williams CM: Chemotherapy-induced cachexia
dysregulates hypothalamic and systemic lipoamines and is attenuated
by cannabigerol. J Cachexia Sarcopenia Muscle. 10:844–859.
2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Malik NM, Liu YL, Cole N, Sanger GJ and
Andrews PL: Differential effects of dexamethasone, ondansetron and
a tachykinin NK1 receptor antagonist (GR205171) on
cisplatin-induced changes in behaviour, food intake, pica and
gastric function in rats. Eur J Pharmacol. 555:164–173.
2007.PubMed/NCBI View Article : Google Scholar
|
34
|
Bing C and Trayhurn P: New insights into
adipose tissue atrophy in cancer cachexia. Proc Nutr Soc.
68:385–392. 2009.PubMed/NCBI View Article : Google Scholar
|
35
|
Patel HJ and Patel BM: TNF-α and cancer
cachexia: Molecular insights and clinical implications. Life Sci.
170:56–63. 2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Sherry BA, Gelin J, Fong Y, Marano M, Wei
H, Cerami A, Lowry SF, Lundholm KG and Moldawer LL:
Anticachectin/tumor necrosis factor-alpha antibodies attenuate
development of cachexia in tumor models. FASEB J. 3:1956–1962.
1989.PubMed/NCBI View Article : Google Scholar
|
37
|
Fearon KC, Glass DJ and Guttridge DC:
Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell
Metab. 16:153–166. 2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Han J, Meng QY, Shen L and Wu GH:
Interleukin-6 induces fat loss in cancer cachexia by promoting
white adipose tissue lipolysis and browning. Lipids Health Dis.
17(14)2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Chi JY, Wu ZH, Choi CHJ, Nguyen L, Tegegne
S, Ackerman SE, Crane A, Marchildon F, Tessier-Lavigne M and Cohen
P: Three-dimensional adipose tissue imaging reveals regional
variation in beige fat biogenesis and PRDM16-dependent sympathetic
neurite density. Cell Metab. 27:226–236.e3. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Johnson J, Canning J, Kaneko T, Pru JK and
Tilly JL: Germline stem cells and follicular renewal in the
postnatal mammalian ovary. Nature. 428:145–150. 2004.PubMed/NCBI View Article : Google Scholar
|
41
|
Silvério R, Lira FS, Oyama LM, Oller do
Nascimento CM, Otoch JP, Alcântara PSM, Batista ML Jr and
Seelaender M: Lipases and lipid droplet-associated protein
expression in subcutaneous white adipose tissue of cachectic
patients with cancer. Lipids Health Dis. 16(159)2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Das SK, Eder S, Schauer S, Diwoky C,
Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner
M, et al: Adipose triglyceride lipase contributes to
cancer-associated cachexia. Science. 333:233–238. 2011.PubMed/NCBI View Article : Google Scholar
|
43
|
Kliewer KL, Ke JY, Tian M, Cole RM,
Andridge RR and Belury MA: Adipose tissue lipolysis and energy
metabolism in early cancer cachexia in mice. Cancer Biol Ther.
16:886–897. 2015.PubMed/NCBI View Article : Google Scholar
|
44
|
Batista ML Jr, Neves RX, Peres SB,
Yamashita AS, Shida CS, Farmer SR and Seelaender M: Heterogeneous
time-dependent response of adipose tissue during the development of
cancer cachexia. J Endocrinol. 215:363–373. 2012.PubMed/NCBI View Article : Google Scholar
|
45
|
Kim JB, Wright HM, Wright M and Spiegelman
BM: ADD1/SREBP1 activates PPARgamma through the production of
endogenous ligand. Proc Natl Acad Sci USA. 95:4333–4337.
1998.PubMed/NCBI View Article : Google Scholar
|
46
|
Wang LF, Miao LJ, Wang XN, Huang CC, Qian
YS, Huang X, Wang XL, Jin WZ, Ji GJ, Fu M, et al: CD38 deficiency
suppresses adipogenesis and lipogenesis in adipose tissues through
activating Sirt1/PPARγ signaling pathway. J Cell Mol Med.
22:101–110. 2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Busquets S, Serpe R, Sirisi S, Toledo M,
Coutinho J, Martínez R, Orpí M, López-Soriano FJ and Argilés JM:
Megestrol acetate: Its impact on muscle protein metabolism supports
its use in cancer cachexia. Clin Nutr. 29:733–737. 2010.PubMed/NCBI View Article : Google Scholar
|
48
|
Dorai V, Hazard MC, Paris J and Delansorne
R: Lipolytic activity of progesterone and synthetic progestins on
rat parametrial adipocytes in vitro. J Pharmacol Exp Ther.
258:620–625. 1991.PubMed/NCBI
|