1
|
He ZH, Li M, Zou SY, Liao FL, Ding YY, Su
HG, Wei XF, Wei CJ, Mu YR and Kong WJ: Protection and prevention of
age-related hearing loss. Adv Exp Med Biol. 1130:59–71.
2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Patel R and McKinnon BJ: Hearing loss in
the elderly. Clin Geriatr Med. 34:163–174. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Ding N, Lee S, Lieber-Kotz M, Yang J and
Gao X: Advances in genome editing for genetic hearing loss. Adv
Drug Deliv Rev. 168:118–133. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Sprinzl GM and Riechelmann H: Current
trends in treating hearing loss in elderly people: A review of the
technology and treatment options-a mini-review. Gerontology.
56:351–358. 2010.PubMed/NCBI View Article : Google Scholar
|
5
|
Kamil RJ, Betz J, Powers BB, Pratt S,
Kritchevsky S, Ayonayon HN, Harris TB, Helzner E, Deal JA, Martin
K, et al: Association of hearing impairment with incident frailty
and falls in older adults. J Aging Health. 28:644–660.
2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Rutherford BR, Brewster K, Golub JS, Kim
AH and Roose SP: Sensation and psychiatry: Linking age-related
hearing loss to late-life depression and cognitive decline. Am J
Psychiatry. 175:215–224. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Matějíková J, Kubiczková L, Sedlaříková L,
Potáčová A, Hájek R and Sevčíková S: Degradation of proteins by
ubiquitin proteasome pathway. Klin Onkol. 26:251–256.
2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Thibaudeau TA and Smith DM: A practical
review of proteasome pharmacology. Pharmacol Rev. 71:170–197.
2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Farshi P, Deshmukh RR, Nwankwo JO,
Arkwright RT, Cvek B, Liu J and Dou QP: Deubiquitinases (DUBs) and
DUB inhibitors: A patent review. Expert Opin Ther Pat.
25:1191–1208. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Mi Z, Liu H, Rose ME, Ma X, Reay DP, Ma J,
Henchir J, Dixon CE and Graham SH: Abolishing UCHL1's hydrolase
activity exacerbates TBI-induced axonal injury and neuronal death
in mice. Exp Neurol. 336(113524)2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Tramutola A, Di Domenico F, Barone E,
Perluigi M and Butterfield DA: It is all about (U)biquitin: Role of
altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease.
Oxid Med Cell Longev. 2016(2756068)2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Ng ASL, Tan YJ, Lu Z, Ng EY, Ng SYE, Chia
NSY, Setiawan F, Xu Z, Keong NCH, Tay KY, et al: Plasma ubiquitin
C-terminal hydrolase L1 levels reflect disease stage and motor
severity in Parkinson's disease. Aging (Albany NY). 12:1488–1495.
2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Su Z, Xiong H, Liu Y, Pang J, Lin H, Zhang
W and Zheng Y: Transcriptomic analysis highlights cochlear
inflammation associated with age-related hearing loss in C57BL/6
mice using next generation sequencing. PeerJ.
8(e9737)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
O'Connor L, Gilmour J and Bonifer C: The
role of the ubiquitously expressed transcription factor Sp1 in
tissue-specific transcriptional regulation and in disease. Yale J
Biol Med. 89:513–525. 2016.PubMed/NCBI
|
15
|
Xie L, Zhou Q, Chen X, Du X, Liu Z, Fei B,
Hou J, Dai Y and She W: Elucidation of the
Hdac2/Sp1/miR-204-5p/Bcl-2 axis as a modulator of cochlear
apoptosis via in vivo/in vitro models of acute hearing loss. Mol
Ther Nucleic Acids. 23:1093–1109. 2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Wang B, Wan L, Sun P, Zhang L, Han L,
Zhang H, Zhang J, Pu Y and Zhu B: Associations of genetic variation
in E3 SUMO-protein ligase CBX4 with noise-induced hearing loss. Hum
Mol Genet. 31:2109–2120. 2022.PubMed/NCBI View Article : Google Scholar
|
17
|
Uraguchi K, Maeda Y, Takahara J, Omichi R,
Fujimoto S, Kariya S, Nishizaki K and Ando M: Upregulation of a
nuclear factor-kappa B-interacting immune gene network in mice
cochleae with age-related hearing loss. PLoS One.
16(e0258977)2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhang Y, Lv Z, Liu Y, Cao H, Yang J and
Wang B: PIN1 protects hair cells and auditory HEI-OC1 cells against
senescence by inhibiting the PI3K/Akt/mTOR pathway. Oxid Med Cell
Longev. 2021(9980444)2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Lin H, Xiong H, Su Z, Pang J, Lai L, Zhang
H, Jian B, Zhang W and Zheng Y: Inhibition of DRP-1-dependent
mitophagy promotes cochlea hair cell senescence and exacerbates
age-related hearing loss. Front Cell Neurosci.
13(550)2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
21
|
Fortunato S, Forli F, Guglielmi V, De
Corso E, Paludetti G, Berrettini S and Fetoni AR: A review of new
insights on the association between hearing loss and cognitive
decline in ageing. Acta Otorhinolaryngol Ital. 36:155–166.
2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Liberman MC: Noise-induced and age-related
hearing loss: New perspectives and potential therapies. F1000Res.
6(927)2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Kamogashira T, Fujimoto C and Yamasoba T:
Reactive oxygen species, apoptosis, and mitochondrial dysfunction
in hearing loss. Biomed Res Int. 2015(617207)2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Pizzino G, Irrera N, Cucinotta M, Pallio
G, Mannino F, Arcoraci V, Squadrito F, Altavilla D and Bitto A:
Oxidative stress: Harms and benefits for human health. Oxid Med
Cell Longev. 2017(8416763)2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Fujimoto C and Yamasoba T: Oxidative
stresses and mitochondrial dysfunction in age-related hearing loss.
Oxid Med Cell Longev. 2014(582849)2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Wei W and Ji S: Cellular senescence:
Molecular mechanisms and pathogenicity. J Cell Physiol.
233:9121–9135. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Luo Y, Zou P, Zou J, Wang J, Zhou D and
Liu L: Autophagy regulates ROS-induced cellular senescence via p21
in a p38 MAPKα dependent manner. Exp Gerontol. 46:860–867.
2011.PubMed/NCBI View Article : Google Scholar
|
28
|
Pattison JS, Osinska H and Robbins J: Atg7
induces basal autophagy and rescues autophagic deficiency in
CryABR120G cardiomyocytes. Circ Res. 109:151–160. 2011.PubMed/NCBI View Article : Google Scholar
|
29
|
Schmidt MF, Gan ZY, Komander D and Dewson
G: Ubiquitin signalling in neurodegeneration: Mechanisms and
therapeutic opportunities. Cell Death Differ. 28:570–590.
2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhang Y, Huang X, Zhao XY, Hu YJ, Sun HY
and Kong WJ: Role of the ubiquitin C-terminal hydrolase
L1-modulated ubiquitin proteasome system in auditory cortex
senescence. ORL J Otorhinolaryngol Relat Spec. 79:153–163.
2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Kim YJ, Kim K, Lee YY, Choo OS, Jang JH
and Choung YH: Downregulated UCHL1 accelerates gentamicin-induced
auditory cell death via autophagy. Mol Neurobiol. 56:7433–7447.
2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA,
Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky
AV, Melnikova NV, Kaprin AD, et al: Mitochondrial dysfunction and
oxidative stress in aging and cancer. Oncotarget. 7:44879–44905.
2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Mosa KA, El-Naggar M, Ramamoorthy K,
Alawadhi H, Elnaggar A, Wartanian S, Ibrahim E and Hani H: Copper
nanoparticles induced genotoxicty, oxidative stress, and changes in
superoxide dismutase (SOD) gene expression in cucumber (cucumis
sativus) plants. Front Plant Sci. 9(872)2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Sikora E, Bielak-Żmijewska A and Mosieniak
G: What is and what is not cell senescence. Postepy Biochem.
64:110–118. 2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Vizcaíno C, Mansilla S and Portugal J: Sp1
transcription factor: A long-standing target in cancer
chemotherapy. Pharmacol Ther. 152:111–124. 2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Beishline K and Azizkhan-Clifford J: Sp1
and the ‘hallmarks of cancer’. FEBS J. 282:224–258. 2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhang H, Mao X, Sun Y, Hu R, Luo W, Zhao
Z, Chen Q and Zhang Z: NF-κB upregulates ubiquitin C-terminal
hydrolase 1 in diseased podocytes in glomerulonephritis. Mol Med
Rep. 12:2893–2901. 2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang Z, Liu N and Chen X, Zhang F, Kong
T, Tang X, Yang Q, Chen W, Xiong X and Chen X: UCHL1 regulates
inflammation via MAPK and NF-κB pathways in LPS-activated
macrophages. Cell Biol Int. 45:2107–2117. 2021.PubMed/NCBI View Article : Google Scholar
|
39
|
Gong Z, Ye Q, Wu JW, Zhou JL, Kong XY and
Ma LK: UCHL1 inhibition attenuates cardiac fibrosis via modulation
of nuclear factor-κB signaling in fibroblasts. Eur J Pharmacol.
900(174045)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Xue H, Yu P, Wang WZ, Niu YY and Li X: The
reduced lncRNA NKILA inhibited proliferation and promoted apoptosis
of chondrocytes via miR-145/SP1/NF-κB signaling in human
osteoarthritis. Eur Rev Med Pharmacol Sci. 24:535–548.
2020.PubMed/NCBI View Article : Google Scholar
|