Tumour‑derived exosomes and their emerging roles in leukaemia (Review)
- Authors:
- Lei Chen
- Ting Xie
- Bing Wei
- Da-Lin Di
-
Affiliations: Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China, Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China - Published online on: February 6, 2023 https://doi.org/10.3892/etm.2023.11825
- Article Number: 126
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Juliusson G and Hough R: Leukemia. Prog Tumor Res. 43:87–100. 2016.PubMed/NCBI View Article : Google Scholar | |
Alsobhi E, Farahat F, Daghistani M, Awad K, Al-Zahran O, Al-Saiari A and Koshak F: Overall survival of adult acute myeloid leukemia based on cytogenetic and molecular abnormalities during 5 years in a single center study. Saudi Med J. 40:1171–1176. 2019.PubMed/NCBI View Article : Google Scholar | |
Schubert D: A brief history of adherons: The discovery of brain exosomes. Int J Mol Sci. 21(7673)2020.PubMed/NCBI View Article : Google Scholar | |
Johnstone RM, Adam M, Hammond JR, Orr L and Turbide C: Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 262:9412–9420. 1987.PubMed/NCBI | |
Keller S, Sanderson MP, Stoeck A and Altevogt P: Exosomes: From biogenesis and secretion to biological function. Immunol Lett. 107:102–108. 2006.PubMed/NCBI View Article : Google Scholar | |
Simpson RJ, Jensen SS and Lim JW: Proteomic profiling of exosomes: Current perspectives. Proteomics. 8:4083–4099. 2008.PubMed/NCBI View Article : Google Scholar | |
Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002.PubMed/NCBI View Article : Google Scholar | |
Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM and Breakefield XO: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008.PubMed/NCBI View Article : Google Scholar | |
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi HS, Motieian M and Pourghadamyari H: MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 234:8465–8486. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, Fu W, Yi J, Wang J and Du G: The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 11:2783–2797. 2021.PubMed/NCBI View Article : Google Scholar | |
Cheng L and Hill AF: Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov. 21:379–399. 2022.PubMed/NCBI View Article : Google Scholar | |
De Toro J, Herschlik L, Waldner C and Mongini C: Emerging roles of exosomes in normal and pathological conditions: New insights for diagnosis and therapeutic applications. Front Immunol. 6(203)2015.PubMed/NCBI View Article : Google Scholar | |
Zhang L and Yu D: Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 1871:455–468. 2019.PubMed/NCBI View Article : Google Scholar | |
Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A and Möller A: Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 4(27031)2015.PubMed/NCBI View Article : Google Scholar | |
Khatun Z, Bhat A, Sharma S and Sharma A: Elucidating diversity of exosomes: Biophysical and molecular characterization methods. Nanomedicine (Lond). 11:2359–2377. 2016.PubMed/NCBI View Article : Google Scholar | |
Guo S, Xu J, Estell AP, Ivory CF, Du D, Lin Y and Dong WJ: Paper-based ITP technology: An application to specific cancer-derived exosome detection and analysis. Biosens Bioelectron. 164(112292)2020.PubMed/NCBI View Article : Google Scholar | |
Agarwal P and Bhatia R: Influence of bone marrow microenvironment on leukemic stem cells: Breaking up an intimate relationship. Adv Cancer Res. 127:227–252. 2015.PubMed/NCBI View Article : Google Scholar | |
Sharma A, Khatun Z and Shiras A: Tumor exosomes: Cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine (Lond). 11:421–437. 2016.PubMed/NCBI View Article : Google Scholar | |
Tan Z, Kan C, Wong M, Sun M, Liu Y, Yang F, Wang S and Zheng H: Regulation of malignant myeloid leukemia by mesenchymal stem cells. Front Cell Dev Biol. 10(857045)2022.PubMed/NCBI View Article : Google Scholar | |
Boyiadzis M and Whiteside TL: Exosomes in acute myeloid leukemia inhibit hematopoiesis. Curr Opin Hematol. 25:279–284. 2018.PubMed/NCBI View Article : Google Scholar | |
Huan J, Hornick NI, Shurtleff MJ, Skinner AM, Goloviznina NA, Roberts CT Jr and Kurre P: RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 73:918–929. 2013.PubMed/NCBI View Article : Google Scholar | |
Huan J, Hornick NI, Goloviznina NA, Kamimae-Lanning AN, David LL, Wilmarth PA, Mori T, Chevillet JR, Narla A, Roberts CT Jr, et al: Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia. 29:2285–2295. 2015.PubMed/NCBI View Article : Google Scholar | |
Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, McDonald T, Lin A, Kumar AR, DiGiusto DL, et al: Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 32:575–587. 2018.PubMed/NCBI View Article : Google Scholar | |
Hornick NI, Doron B, Abdelhamed S, Huan J, Harrington CA, Shen R, Cambronne XA, Chakkaramakkil VS and Kurre P: AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Sci Signal. 9(ra88)2016.PubMed/NCBI View Article : Google Scholar | |
Zhao C, Du F, Zhao Y, Wang S and Qi L: Acute myeloid leukemia cells secrete microRNA-4532-containing exosomes to mediate normal hematopoiesis in hematopoietic stem cells by activating the LDOC1-dependent STAT3 signaling pathway. Stem Cell Res Ther. 10(384)2019.PubMed/NCBI View Article : Google Scholar | |
Yoshida M, Horiguchi H, Kikuchi S, Iyama S, Ikeda H, Goto A, Kawano Y, Murase K, Takada K, Miyanishi K, et al: miR-7977 inhibits the Hippo-YAP signaling pathway in bone marrow mesenchymal stromal cells. PLoS One. 14(e213220)2019.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Khadka B, Wu J, Feng Y, Long B, Xiao R and Liu J: Bone marrow mesenchymal stem cells-derived exosomal miR-425-5p inhibits acute myeloid leukemia cell proliferation, apoptosis, invasion and migration by targeting WTAP. Onco Targets Ther. 14:4901–4914. 2021.PubMed/NCBI View Article : Google Scholar | |
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, Mccubrey JA and Martelli AM: Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 1863:449–463. 2016.PubMed/NCBI View Article : Google Scholar | |
Rios de Los Rios J, Enciso J, Vilchis-Ordoñez A, Vázquez-Ramírez R, Ramirez-Ramirez D, Balandrán JC, Rodríguez-Martínez A, Ruiz-Tachiquín M, Pompa-Mera E, Mendoza L, et al: Acute lymphoblastic leukemia-secreted miRNAs induce a proinflammatory microenvironment and promote the activation of hematopoietic progenitors. J Leukoc Biol. 112:31–45. 2022.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Li J and Geng Y: Exosomes derived from chronic lymphocytic leukaemia cells transfer miR-146a to induce the transition of mesenchymal stromal cells into cancer-associated fibroblasts. J Biochem. 168:491–498. 2020.PubMed/NCBI View Article : Google Scholar | |
Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, et al: Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 126:1106–1117. 2015.PubMed/NCBI View Article : Google Scholar | |
Yeh YY, Ozer HG, Lehman AM, Maddocks K, Yu L, Johnson AJ and Byrd JC: Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood. 125:3297–3305. 2015.PubMed/NCBI View Article : Google Scholar | |
Prieto D, Sotelo N, Seija N, Sernbo S, Abreu C, Durán R, Gil M, Sicco E, Irigoin V, Oliver C, et al: S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression. Blood. 130:777–788. 2017.PubMed/NCBI View Article : Google Scholar | |
Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G and Alessandro R: Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett. 348:71–76. 2014.PubMed/NCBI View Article : Google Scholar | |
Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, De Leo G and Alessandro R: Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer. 13(169)2014.PubMed/NCBI View Article : Google Scholar | |
Jiang YH, Liu J, Lin J, Li SQ, Xu YM, Min QH, Zhong QH, Sun F, Li J, You XH, et al: K562 cell-derived exosomes suppress the adhesive function of bone marrow mesenchymal stem cells via delivery of miR-711. Biochem Biophys Res Commun. 521:584–589. 2020.PubMed/NCBI View Article : Google Scholar | |
Yang Y, He H, He J, Gu X, Hu P, Zuo R and Sa Y: Hyperleukocytic acute leukemia circulating exosomes regulate HSCs and BM-MSCs. J Healthc Eng. 2021(9457070)2021.PubMed/NCBI View Article : Google Scholar | |
Gao X, Wan Z, Wei M, Dong Y, Zhao Y, Chen X, Li Z, Qin W, Yang G and Liu L: Chronic myelogenous leukemia cells remodel the bone marrow niche via exosome-mediated transfer of miR-320. Theranostics. 9:5642–5656. 2019.PubMed/NCBI View Article : Google Scholar | |
Jafarzadeh N, Gholampour MA, Alivand MR, Kavousi S, Arzi L, Rad F, Sadeghizadeh M and Pornour M: CML derived exosomes promote tumor favorable functional performance in T cells. BMC Cancer. 21(1002)2021.PubMed/NCBI View Article : Google Scholar | |
Wan Z, Chen X, Gao X, Dong Y, Zhao Y, Wei M, Fan W, Yang G and Liu L: Chronic myeloid leukemia-derived exosomes attenuate adipogenesis of adipose derived mesenchymal stem cells via transporting miR-92a-3p. J Cell Physiol. 234:21274–21283. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang D, Ming X, Xu J and Xiao Y: Circ_0009910 shuttled by exosomes regulates proliferation, cell cycle and apoptosis of acute myeloid leukemia cells by regulating miR-5195-3p/GRB10 axis. Hematol Oncol. 39:390–400. 2021.PubMed/NCBI View Article : Google Scholar | |
Cheng H, Ding J, Tang G, Huang A, Gao L, Yang J and Chen L: Human mesenchymal stem cells derived exosomes inhibit the growth of acute myeloid leukemia cells via regulating miR-23b-5p/TRIM14 pathway. Mol Med. 27(128)2021.PubMed/NCBI View Article : Google Scholar | |
Jiang D, Wu X, Sun X, Tan W, Dai X, Xie Y, Du A and Zhao Q: Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11. J Nanobiotechnology. 20(29)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang F, Lu Y, Wang M, Zhu J, Li J, Zhang P, Yuan Y and Zhu F: Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Mol Cell Probes. 51(101513)2020.PubMed/NCBI View Article : Google Scholar | |
Yan W, Song L, Wang H, Yang W, Hu L and Yang Y: Extracellular vesicles carrying miRNA-181b-5p affects the malignant progression of acute lymphoblastic leukemia. J Transl Med. 19(511)2021.PubMed/NCBI View Article : Google Scholar | |
Raimondo S, Saieva L, Corrado C, Fontana S, Flugy A, Rizzo A, De Leo G and Alessandro R: Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism. Cell Commun Signal. 13(8)2015.PubMed/NCBI View Article : Google Scholar | |
Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, et al: Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem. 289:22284–22305. 2014.PubMed/NCBI View Article : Google Scholar | |
Haque S and Vaiselbuh SR: Silencing of exosomal miR-181a reverses pediatric acute lymphocytic leukemia cell proliferation. Pharmaceuticals (Basel). 13(241)2020.PubMed/NCBI View Article : Google Scholar | |
Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T and Kharaziha P: Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 234:16885–16903. 2019.PubMed/NCBI View Article : Google Scholar | |
Ludwig N and Whiteside TL: Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets. 22:409–417. 2018.PubMed/NCBI View Article : Google Scholar | |
Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R and Kohn EC: Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 15:33–45. 2012.PubMed/NCBI View Article : Google Scholar | |
Corrado C, Saieva L, Raimondo S, Santoro A, De Leo G and Alessandro R: Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. J Cell Mol Med. 20:1829–1839. 2016.PubMed/NCBI View Article : Google Scholar | |
Umezu T, Ohyashiki K, Kuroda M and Ohyashiki JH: Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 32:2747–2755. 2013.PubMed/NCBI View Article : Google Scholar | |
Roma-Rodrigues C, Fernandes AR and Baptista PV: Counteracting the effect of leukemia exosomes by antiangiogenic gold nanoparticles. Int J Nanomedicine. 14:6843–6854. 2019.PubMed/NCBI View Article : Google Scholar | |
Tadokoro H, Umezu T, Ohyashiki K, Hirano T and Ohyashiki JH: Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem. 288:34343–34351. 2013.PubMed/NCBI View Article : Google Scholar | |
Ohyashiki JH, Umezu T and Ohyashiki K: Exosomes promote bone marrow angiogenesis in hematologic neoplasia: The role of hypoxia. Curr Opin Hematol. 23:268–273. 2016.PubMed/NCBI View Article : Google Scholar | |
Taverna S, Fontana S, Monteleone F, Pucci M, Saieva L, De Caro V, Cardinale VG, Giallombardo M, Vicario E, Rolfo C, et al: Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget. 7:30420–30439. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang B, Wang X, Hou D, Huang Q, Zhan W, Chen C, Liu J, You R, Xie J, Chen P and Huang H: Exosomes derived from acute myeloid leukemia cells promote chemoresistance by enhancing glycolysis-mediated vascular remodeling. J Cell Physiol. 234:10602–10614. 2019.PubMed/NCBI View Article : Google Scholar | |
Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D and Kay NE: Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: Implications for disease progression. Blood. 115:1755–1764. 2010.PubMed/NCBI View Article : Google Scholar | |
El-Saghir J, Nassar F, Tawil N and El-Sabban M: ATL-derived exosomes modulate mesenchymal stem cells: Potential role in leukemia progression. Retrovirology. 13(73)2016.PubMed/NCBI View Article : Google Scholar | |
Vago L and Gojo I: Immune escape and immunotherapy of acute myeloid leukemia. J Clin Invest. 130:1552–1564. 2020.PubMed/NCBI View Article : Google Scholar | |
Clayton A, Mitchell JP, Court J, Linnane S, Mason MD and Tabi Z: Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 180:7249–7258. 2008.PubMed/NCBI View Article : Google Scholar | |
Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL and Boyiadzis M: Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 96:1302–1309. 2011.PubMed/NCBI View Article : Google Scholar | |
Haderk F, Schulz R, Iskar M, Cid LL, Worst T, Willmund KV, Schulz A, Warnken U, Seiler J, Benner A, et al: Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol. 2(eaah5509)2017.PubMed/NCBI View Article : Google Scholar | |
Chitadze G, Bhat J, Lettau M, Janssen O and Kabelitz D: Generation of soluble NKG2D ligands: Proteolytic cleavage, exosome secretion and functional implications. Scand J Immunol. 78:120–129. 2013.PubMed/NCBI View Article : Google Scholar | |
Whiteside TL: Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 41:245–251. 2013.PubMed/NCBI View Article : Google Scholar | |
Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ and Whiteside TL: Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 183:3720–3730. 2009.PubMed/NCBI View Article : Google Scholar | |
Santos PM and Butterfield LH: Dendritic cell-based cancer vaccines. J Immunol. 200:443–449. 2018.PubMed/NCBI View Article : Google Scholar | |
Yin W, Ouyang S, Li Y, Xiao B and Yang H: Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity. Inflammation. 36:232–240. 2013.PubMed/NCBI View Article : Google Scholar | |
Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF, Berneman ZN and Anguille S: Dendritic cell-based immunotherapy of acute myeloid leukemia. J Clin Med. 8(579)2019.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Wang S, Sun K and Chng WJ: The emerging roles of exosomes in leukemogeneis. Oncotarget. 7:50698–50707. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, Wang D, Li N, Cheng JT, Lyv YN, et al: Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol. 13(107)2020.PubMed/NCBI View Article : Google Scholar | |
Sabado RL, Balan S and Bhardwaj N: Dendritic cell-based immunotherapy. Cell Res. 27:74–95. 2017.PubMed/NCBI View Article : Google Scholar | |
Huang L, Rong Y, Tang X, Yi K, Qi P, Hou J, Liu W, He Y, Gao X, Yuan C and Wang F: Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 21(45)2022.PubMed/NCBI View Article : Google Scholar | |
Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H and Yin H: Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 67:739–748. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang X, He L, Huang X, Zhang S, Cao W, Che F, Zhu Y and Dai J: Recent progress of exosomes in multiple myeloma: Pathogenesis, diagnosis, prognosis and therapeutic strategies. Cancers (Basel). 13(1635)2021.PubMed/NCBI View Article : Google Scholar | |
Huang F, Wan J, Hao S, Deng X, Chen L and Ma L: TGF-β1-silenced leukemia cell-derived exosomes target dendritic cells to induce potent anti-leukemic immunity in a mouse model. Cancer Immunol Immunother. 66:1321–1331. 2017.PubMed/NCBI View Article : Google Scholar | |
Huang F, Li Z, Zhang W, Li J and Hao S: Enhancing the anti-leukemia immunity of acute lymphocytic leukemia-derived exosome-based vaccine by downregulation of PD-L1 expression. Cancer Immunol Immunother. 71:2197–2212. 2022.PubMed/NCBI View Article : Google Scholar | |
Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL, Ott M, Wang F, Hawke D, Yu J, Healy LM, et al: Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology. 7(e1412909)2018.PubMed/NCBI View Article : Google Scholar | |
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018.PubMed/NCBI View Article : Google Scholar | |
Hu K, Gu Y, Lou L, Liu L, Hu Y, Wang B, Luo Y, Shi J, Yu X and Huang H: Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway. J Hematol Oncol. 8(1)2015.PubMed/NCBI View Article : Google Scholar | |
Cheng YL, Huang WC, Chen CL, Tsai CC, Wang CY, Chiu WH, Chen YL, Lin YS, Chang CF and Lin CF: Increased Galectin-3 facilitates leukemia cell survival from apoptotic stimuli. Biochem Biophys Res Commun. 412:334–340. 2011.PubMed/NCBI View Article : Google Scholar | |
Fei F, Joo EJ, Tarighat SS, Schiffer I, Paz H, Fabbri M, Abdel-Azim H, Groffen J and Heisterkamp N: B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3. Oncotarget. 6:11378–11394. 2015.PubMed/NCBI View Article : Google Scholar | |
Chen T, Zhang G, Kong L, Xu S, Wang Y and Dong M: Leukemia-derived exosomes induced IL-8 production in bone marrow stromal cells to protect the leukemia cells against chemotherapy. Life Sci. 221:187–195. 2019.PubMed/NCBI View Article : Google Scholar | |
Macanas-Pirard P, Broekhuizen R, González A, Oyanadel C, Ernst D, García P, Montecinos VP, Court F, Ocqueteau M, Ramirez P and Nervi B: Resistance of leukemia cells to cytarabine chemotherapy is mediated by bone marrow stroma, involves cell-surface equilibrative nucleoside transporter-1 removal and correlates with patient outcome. Oncotarget. 8:23073–23086. 2017.PubMed/NCBI View Article : Google Scholar | |
Daver N, Venugopal S and Ravandi F: FLT3 mutated acute myeloid leukemia: 2021 Treatment algorithm. Blood Cancer J. 11(104)2021.PubMed/NCBI View Article : Google Scholar | |
Daver N, Schlenk RF, Russell NH and Levis MJ: Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia. 33:299–312. 2019.PubMed/NCBI View Article : Google Scholar | |
Viola S, Traer E, Huan J, Hornick NI, Tyner JW, Agarwal A, Loriaux M, Johnstone B and Kurre P: Alterations in acute myeloid leukaemia bone marrow stromal cell exosome content coincide with gains in tyrosine kinase inhibitor resistance. Br J Haematol. 172:983–986. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu J, Zhang Y, Li X, Ren J, Chen L, Chen J and Cao Y: Exosomes from bone marrow mesenchymal stem cells decrease chemosensitivity of acute myeloid leukemia cells via delivering miR-10a. Biochem Biophys Res Commun. 622:149–156. 2022.PubMed/NCBI View Article : Google Scholar | |
Crompot E, Van Damme M, Pieters K, Vermeersch M, Perez-Morga D, Mineur P, Maerevoet M, Meuleman N, Bron D, Lagneaux L and Stamatopoulos B: Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica. 102:1594–1604. 2017.PubMed/NCBI View Article : Google Scholar | |
Javidi-Sharifi N, Martinez J, English I, Joshi SK, Scopim-Ribeiro R, Viola SK, Edwards DT V, Agarwal A, Lopez C, Jorgens D, et al: FGF2-FGFR1 signaling regulates release of leukemia-protective exosomes from bone marrow stromal cells. Elife. 8(e40033)2019.PubMed/NCBI View Article : Google Scholar | |
Shah CA, Bei L, Wang H, Platanias LC and Eklund EA: The leukemia-associated Mll-Ell oncoprotein induces fibroblast growth factor 2 (Fgf2)-dependent cytokine hypersensitivity in myeloid progenitor cells. J Biol Chem. 288:32490–32505. 2013.PubMed/NCBI View Article : Google Scholar | |
Li MY, Zhao C, Chen L, Yao FY, Zhong FM, Chen Y, Xu S, Jiang JY, Yang YL, Min QH, et al: Quantitative proteomic analysis of plasma exosomes to identify the candidate biomarker of imatinib resistance in chronic myeloid leukemia patients. Front Oncol. 11(779567)2021.PubMed/NCBI View Article : Google Scholar | |
Chen X, Chen Y, Zhang M, Cheng H, Mai H, Yi M, Xu H, Yuan X, Liu S and Wen F: HucMSC exosomes promoted imatinib-induced apoptosis in K562-R cells via a miR-145a-5p/USP6/GLS1 axis. Cell Death Dis. 13(92)2022.PubMed/NCBI View Article : Google Scholar | |
Dong Y, Lin Y, Gao X, Zhao Y, Wan Z, Wang H, Wei M, Chen X, Qin W, Yang G and Liu L: Targeted blocking of miR328 lysosomal degradation with alkalized exosomes sensitizes the chronic leukemia cells to imatinib. Appl Microbiol Biotechnol. 103:9569–9582. 2019.PubMed/NCBI View Article : Google Scholar | |
Min QH, Wang XZ, Zhang J, Chen QG, Li SQ, Liu XQ, Li J, Liu J, Yang WM, Jiang YH, et al: Exosomes derived from imatinib-resistant chronic myeloid leukemia cells mediate a horizontal transfer of drug-resistant trait by delivering miR-365. Exp Cell Res. 362:386–393. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Song B, Wei Y, Chen F, Chi Y, Fan H, Liu N, Li Z, Han Z and Ma F: Exosomes from mesenchymal stromal cells enhance imatinib-induced apoptosis in human leukemia cells via activation of caspase signaling pathway. Cytotherapy. 20:181–188. 2018.PubMed/NCBI View Article : Google Scholar | |
Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X and Zhang X: Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 21(56)2022.PubMed/NCBI View Article : Google Scholar | |
Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo X, Wei Q, Wang J, Xiong H, Chen C, Xu B, et al: Exosome: Emerging biomarker in breast cancer. Oncotarget. 8:41717–41733. 2017.PubMed/NCBI View Article : Google Scholar | |
Boyiadzis M and Whiteside TL: Plasma-derived exosomes in acute myeloid leukemia for detection of minimal residual disease: Are we ready? Expert Rev Mol Diagn. 16:623–629. 2016.PubMed/NCBI View Article : Google Scholar | |
An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, Inal JM and Zheng L: Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 4(27522)2015.PubMed/NCBI View Article : Google Scholar | |
Bobrie A, Colombo M, Raposo G and Théry C: Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic. 12:1659–1668. 2011.PubMed/NCBI View Article : Google Scholar | |
Tzoran I, Rebibo-Sabbah A, Brenner B and Aharon A: Disease dynamics in patients with acute myeloid leukemia: New biomarkers. Exp Hematol. 43:936–943. 2015.PubMed/NCBI View Article : Google Scholar | |
Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH and Kurre P: Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci Rep. 5(11295)2015.PubMed/NCBI View Article : Google Scholar | |
Hong CS, Muller L, Whiteside TL and Boyiadzis M: Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia. Front Immunol. 5(160)2014.PubMed/NCBI View Article : Google Scholar | |
Li Q, Wu Y, Zhang Y, Sun H, Lu Z, Du K, Fang S and Li W: miR-125b regulates cell progression in chronic myeloid leukemia via targeting BAK1. Am J Transl Res. 8:447–459. 2016.PubMed/NCBI | |
Jiang L, Deng T, Wang D and Xiao Y: Elevated serum exosomal miR-125b level as a potential marker for poor prognosis in intermediate-risk acute myeloid leukemia. Acta Haematol. 140:183–192. 2018.PubMed/NCBI View Article : Google Scholar | |
Lin X, Ling Q, Lv Y, Ye W, Huang J, Li X, Guo Q, Wang J, Li Z and Jin J: Plasma exosome-derived microRNA-532 as a novel predictor for acute myeloid leukemia. Cancer Biomark. 28:151–158. 2020.PubMed/NCBI View Article : Google Scholar | |
Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe KG, Nouraee N, Ikuo M, Ghosh AK, Lerner S, Rassenti LZ, et al: Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood. 122:1891–1899. 2013.PubMed/NCBI View Article : Google Scholar | |
Stamatopoulos B, Van Damme M, Crompot E, Dessars B, Housni HE, Mineur P, Meuleman N, Bron D and Lagneaux L: Opposite prognostic significance of cellular and serum circulating MicroRNA-150 in patients with chronic lymphocytic leukemia. Mol Med. 21:123–133. 2015.PubMed/NCBI View Article : Google Scholar | |
Okimoto RA and Van Etten RA: Navigating the road toward optimal initial therapy for chronic myeloid leukemia. Curr Opin Hematol. 18:89–97. 2011.PubMed/NCBI View Article : Google Scholar | |
Jabbour E and Kantarjian H: Chronic myeloid leukemia: 2020 Update on diagnosis, therapy and monitoring. Am J Hematol. 95:691–709. 2020.PubMed/NCBI View Article : Google Scholar | |
Bernardi S, Foroni C, Zanaglio C, Re F, Polverelli N, Turra A, Morello E, Farina M, Cattina F, Gandolfi L, et al: Feasibility of tumor-derived exosome enrichment in the onco-hematology leukemic model of chronic myeloid leukemia. Int J Mol Med. 44:2133–2144. 2019.PubMed/NCBI View Article : Google Scholar | |
Kibria G, Ramos EK, Wan Y, Gius DR and Liu H: Exosomes as a drug delivery system in cancer therapy: Potential and challenges. Mol Pharm. 15:3625–3633. 2018.PubMed/NCBI View Article : Google Scholar | |
Ha D, Yang N and Nadithe V: Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm Sin B. 6:287–296. 2016.PubMed/NCBI View Article : Google Scholar | |
Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, Memeo L, Manno M, Raccosta S, Diana P, et al: Interleukin 3-receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics. 7:1333–1345. 2017.PubMed/NCBI View Article : Google Scholar | |
Taverna S, Giallombardo M, Pucci M, Flugy A, Manno M, Raccosta S, Rolfo C, De Leo G and Alessandro R: Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: A possible role for exosomal disposal of miR-21. Oncotarget. 6:21918–21933. 2015.PubMed/NCBI View Article : Google Scholar | |
Gu X, Erb U, Büchler MW and Zöller M: Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. Int J Cancer. 136:E74–E84. 2015.PubMed/NCBI View Article : Google Scholar | |
Cheng Q, Shi X and Zhang Y: Reprogramming exosomes for immunotherapy. Methods Mol Biol. 2097:197–209. 2020.PubMed/NCBI View Article : Google Scholar | |
Qiao L, Hu S, Huang K, Su T, Li Z, Vandergriff A, Cores J, Dinh PU, Allen T, Shen D, et al: Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics. 10:3474–3487. 2020.PubMed/NCBI View Article : Google Scholar |