Advances in cellular senescence in idiopathic pulmonary fibrosis (Review)
- Authors:
- Shan Han
- Qiangwei Lu
- Xiaoqiu Liu
-
Affiliations: Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China - Published online on: February 15, 2023 https://doi.org/10.3892/etm.2023.11844
- Article Number: 145
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rennard SI, Bitterman PB and Crystal RG: Response of the lower respiratory tract to injury. Mechanisms of repair of the parenchymal cells of the alveolar wall. Chest. 84:735–739. 1983.PubMed/NCBI View Article : Google Scholar | |
Tian Y, Li H, Qiu T, Dai J, Zhang Y, Chen J and Cai H: Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation. Aging Cell. 18(e12858)2019.PubMed/NCBI View Article : Google Scholar | |
Selman M, King TE and Pardo A: Idiopathic pulmonary fibrosis: Prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 134:136–151. 2001.PubMed/NCBI View Article : Google Scholar | |
Iwai K, Mori T, Yamada N, Yamaguchi M and Hosoda Y: Idiopathic pulmonary fibrosis. Epidemiologic approaches to occupational exposure. Am J Respir Crit Care Med. 150:670–675. 1994.PubMed/NCBI View Article : Google Scholar | |
Lin Y and Xu Z: Fibroblast senescence in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 8(593283)2020.PubMed/NCBI View Article : Google Scholar | |
King TJ, Pardo A and Selman M: Idiopathic pulmonary fibrosis. Lancet. 378:1949–1961. 2011.PubMed/NCBI View Article : Google Scholar | |
Rana T, Jiang C, Liu G, Miyata T, Antony V, Thannickal VJ and Liu RM: PAI-1 regulation of TGF-β1-induced alveolar type II cell senescence, SASP secretion, and SASP-mediated activation of alveolar macrophages. Am J Respir Cell Mol Biol. 62:319–330. 2020.PubMed/NCBI View Article : Google Scholar | |
Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A and Glassberg MK: Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne). 4(118)2017.PubMed/NCBI View Article : Google Scholar | |
Liu RM and Liu G: Cell senescence and fibrotic lung diseases. Exp Gerontol. 132(110836)2020.PubMed/NCBI View Article : Google Scholar | |
Mohamad KN, Safuan S, Shamsuddin S and Foroozandeh P: Aging of the cells: Insight into cellular senescence and detection Methods. Eur J Cell Biol. 99(151108)2020.PubMed/NCBI View Article : Google Scholar | |
Coppé JP, Desprez PY, Krtolica A and Campisi J: The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol. 5:99–118. 2010.PubMed/NCBI View Article : Google Scholar | |
Kumari R and Jat P: Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 9(645593)2021.PubMed/NCBI View Article : Google Scholar | |
Sims JT, Ganguly SS, Bennett H, Friend JW, Tepe J and Plattner R: Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One. 8(e55509)2013.PubMed/NCBI View Article : Google Scholar | |
Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J, Chiocca S, Suske G, Rotheneder H, Wintersberger E and Seiser C: The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol. 23:2669–2679. 2003.PubMed/NCBI View Article : Google Scholar | |
Parimon T, Yao C, Stripp BR, Noble PW and Chen P: Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci. 21(2269)2020.PubMed/NCBI View Article : Google Scholar | |
Tanjore H, Blackwell TS and Lawson WE: Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 302:L721–L729. 2012.PubMed/NCBI View Article : Google Scholar | |
Borok Z, Horie M, Flodby P, Wang H, Liu Y, Ganesh S, Firth AL, Minoo P, Li C, Beers MF, et al: Grp78 loss in epithelial progenitors reveals an age-linked role for endoplasmic reticulum stress in pulmonary fibrosis. Am J Respir Crit Care Med. 201:198–211. 2020.PubMed/NCBI View Article : Google Scholar | |
Araya J, Kojima J, Takasaka N, Ito S, Fujii S, Hara H, Yanagisawa H, Kobayashi K, Tsurushige C, Kawaishi M, et al: Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 304:L56–L69. 2013.PubMed/NCBI View Article : Google Scholar | |
Hill C, Li J, Liu D, Conforti F, Brereton CJ, Yao L, Zhou Y, Alzetani A, Chee SJ, Marshall BG, et al: Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis. 10(591)2019.PubMed/NCBI View Article : Google Scholar | |
Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO and Morse D: Autophagy in idiopathic pulmonary fibrosis. PLoS One. 7(e41394)2012.PubMed/NCBI View Article : Google Scholar | |
Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I, Phillips JA, et al: Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 356:1317–1326. 2007.PubMed/NCBI View Article : Google Scholar | |
Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD, Vulto I, Xie M, Qi X, Tuder RM, et al: Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA. 105:13051–13056. 2008.PubMed/NCBI View Article : Google Scholar | |
Armanios M: Telomeres and age-related disease: How telomere biology informs clinical paradigms. J Clin Invest. 123:996–1002. 2013.PubMed/NCBI View Article : Google Scholar | |
Kurundkar A and Thannickal VJ: Redox mechanisms in age-related lung fibrosis. Redox Biol. 9:67–76. 2016.PubMed/NCBI View Article : Google Scholar | |
Kim SJ, Cheresh P, Eren M, Jablonski RP, Yeldandi A, Ridge KM, Budinger GRS, Kim DH, Wolf M, Vaughan DE and Kamp DW: Klotho, an antiaging molecule, attenuates oxidant-induced alveolar epithelial cell mtDNA damage and apoptosis. Am J Physiol Lung Cell Mol Physiol. 313:L16–L26. 2017.PubMed/NCBI View Article : Google Scholar | |
Disayabutr S, Kim EK, Cha SI, Green G, Naikawadi RP, Jones KD, Golden JA, Schroeder A, Matthay MA, Kukreja J, et al: miR-34 miRNAs regulate cellular senescence in type II alveolar epithelial cells of patients with idiopathic pulmonary fibrosis. PLoS One. 11(e158367)2016.PubMed/NCBI View Article : Google Scholar | |
Cui H, Ge J, Xie N, Banerjee S, Zhou Y, Liu RM, Thannickal VJ and Liu G: miR-34a promotes fibrosis in aged lungs by inducing alveolarepithelial dysfunctions. Am J Physiol Lung Cell Mol Physiol. 312:L415–L424. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang L, Cheng W and Zhang Z: Respiratory syncytial virus infection accelerates lung fibrosis through the unfolded protein response in a bleomycin-induced pulmonary fibrosis animal model. Mol Med Rep. 16:310–316. 2017.PubMed/NCBI View Article : Google Scholar | |
Pihán P, Carreras-Sureda A and Hetz C: BCL-2 family: Integrating stress responses at the ER to control cell demise. Cell Death Differ. 24:1478–1487. 2017.PubMed/NCBI View Article : Google Scholar | |
Burman A, Tanjore H and Blackwell TS: Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biol. 68-69:355–365. 2018.PubMed/NCBI View Article : Google Scholar | |
Bueno M, Lai YC, Romero Y, Brands J, St Croix CM, Kamga C, Corey C, Herazo-Maya JD, Sembrat J, Lee JS, et al: PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 125:521–538. 2015.PubMed/NCBI View Article : Google Scholar | |
Ricci A, Cherubini E, Scozzi D, Pietrangeli V, Tabbì L, Raffa S, Leone L, Visco V, Torrisi MR, Bruno P, et al: Decreased expression of autophagic beclin 1 protein in idiopathic pulmonary fibrosis fibroblasts. J Cell Physiol. 228:1516–1524. 2013.PubMed/NCBI View Article : Google Scholar | |
Gui YS, Wang L, Tian X, Li X, Ma A, Zhou W, Zeng N, Zhang J, Cai B, Zhang H, et al: mTOR Overactivation and compromised autophagy in the pathogenesis of pulmonary fibrosis. PLoS One. 10(e138625)2015.PubMed/NCBI View Article : Google Scholar | |
Kesireddy VS, Chillappagari S, Ahuja S, Knudsen L, Henneke I, Graumann J, Meiners S, Ochs M, Ruppert C, Korfei M, et al: Susceptibility of microtubule-associated protein 1 light chain 3β (MAP1LC3B/LC3B) knockout mice to lung injury and fibrosis. FASEB J. 33:12392–12408. 2019.PubMed/NCBI View Article : Google Scholar | |
Ma H, Wu X, Li Y and Xia Y: Research progress in the molecular mechanisms, therapeutic targets, and drug development of idiopathic pulmonary fibrosis. Front Pharmacol. 13(963054)2022.PubMed/NCBI View Article : Google Scholar | |
Tsang AR, Wyatt HD, Ting NS and Beattie TL: hTERT mutations associated with idiopathic pulmonary fibrosis affect telomerase activity, telomere length, and cell growth by distinct mechanisms. Aging Cell. 11:482–490. 2012.PubMed/NCBI View Article : Google Scholar | |
Tsakiri KD, Cronkhite JT, Kuan PJ, Xing C, Raghu G, Weissler JC, Rosenblatt RL, Shay JW and Garcia CK: Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA. 104:7552–7557. 2007.PubMed/NCBI View Article : Google Scholar | |
Bilgili H, Białas AJ, Górski P and Piotrowski WJ: Telomere Abnormalities in the Pathobiology of Idiopathic Pulmonary Fibrosis. J Clin Med. 8(1232)2019.PubMed/NCBI View Article : Google Scholar | |
Povedano JM, Martinez P, Flores JM, Mulero F and Blasco MA: Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep. 12:286–299. 2015.PubMed/NCBI View Article : Google Scholar | |
Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F, Tuder RM, Hogan BL, Mitzner W and Armanios M: Telomere dysfunction causes alveolar stem cell failure. Proc Natl Acad Sci USA. 112:5099–5104. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang K, Xu L and Cong YS: Telomere dysfunction in idiopathic pulmonary fibrosis. Front Med (Lausanne). 8(739810)2021.PubMed/NCBI View Article : Google Scholar | |
Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, et al: Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 470:359–365. 2011.PubMed/NCBI View Article : Google Scholar | |
Tsubouchi K, Araya J and Kuwano K: PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflamm Regen. 38(18)2018.PubMed/NCBI View Article : Google Scholar | |
Mora AL, Bueno M and Rojas M: Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest. 127:405–414. 2017.PubMed/NCBI View Article : Google Scholar | |
Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A and Grant R: Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One. 6(e19194)2011.PubMed/NCBI View Article : Google Scholar | |
Kwon Y, Kim J, Lee CY and Kim H: Expression of SIRT1 and SIRT3 varies according to age in mice. Anat Cell Biol. 48:54–61. 2015.PubMed/NCBI View Article : Google Scholar | |
Sosulski ML, Gongora R, Feghali-Bostwick C, Lasky JA and Sanchez CG: Sirtuin 3 deregulation promotes pulmonary fibrosis. J Gerontol A Biol Sci Med Sci. 72:595–602. 2017.PubMed/NCBI View Article : Google Scholar | |
Amara N, Goven D, Prost F, Muloway R, Crestani B and Boczkowski J: NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax. 65:733–738. 2010.PubMed/NCBI View Article : Google Scholar | |
Veith C, Boots AW, Idris M, van Schooten FJ and van der Vliet A: Redox imbalance in idiopathic pulmonary fibrosis: A role for oxidant Cross-talk between NADPH oxidase enzymes and mitochondria. Antioxid Redox Signal. 31:1092–1115. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Li T, Pan M, Wang W, Huang W, Yuan Y, Xie Z, Chen Y, Peng J, Li X and Meng Y: SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism. J Transl Med. 20(222)2022.PubMed/NCBI View Article : Google Scholar | |
Birch J, Barnes PJ and Passos JF: Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease. Pharmacol Ther. 183:34–49. 2018.PubMed/NCBI View Article : Google Scholar | |
Shetty SK, Tiwari N, Marudamuthu AS, Puthusseri B, Bhandary YP, Fu J, Levin J, Idell S and Shetty S: p53 and miR-34a feedback promotes lung epithelial injury and pulmonary fibrosis. Am J Pathol. 187:1016–1034. 2017.PubMed/NCBI View Article : Google Scholar | |
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP and Thannickal VJ: Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med. 65:56–69. 2019.PubMed/NCBI View Article : Google Scholar | |
Moss BJ, Ryter SW and Rosas IO: Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol. 17:515–546. 2022.PubMed/NCBI View Article : Google Scholar | |
Poddar S, Kesharwani D and Datta M: Interplay between the miRNome and the epigenetic machinery: Implications in health and disease. J Cell Physiol. 232:2938–2945. 2017.PubMed/NCBI View Article : Google Scholar | |
Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012.PubMed/NCBI View Article : Google Scholar | |
Neveu WA, Mills ST, Staitieh BS and Sueblinvong V: TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol. 309:C616–C626. 2015.PubMed/NCBI View Article : Google Scholar | |
Rabinovich EI, Kapetanaki MG, Steinfeld I, Gibson KF, Pandit KV, Yu G, Yakhini Z and Kaminski N: Global methylation patterns in idiopathic pulmonary fibrosis. PLoS One. 7(e33770)2012.PubMed/NCBI View Article : Google Scholar | |
Huang SK, Scruggs AM, McEachin RC, White ES and Peters-Golden M: Lung fibroblasts from patients with idiopathic pulmonary fibrosis exhibit genome-wide differences in DNA methylation compared to fibroblasts from nonfibrotic lung. PLoS One. 9(e107055)2014.PubMed/NCBI View Article : Google Scholar | |
Bartczak K, Białas AJ, Kotecki MJ, Górski P and Piotrowski WJ: More than a genetic code: Epigenetics of lung fibrosis. Mol Diagn Ther. 24:665–681. 2020.PubMed/NCBI View Article : Google Scholar | |
Roth SY, Denu JM and Allis CD: Histone acetyltransferases. Annu Rev Biochem. 70:81–120. 2001.PubMed/NCBI View Article : Google Scholar | |
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 370:737–749. 2003.PubMed/NCBI View Article : Google Scholar | |
Huang SK, Scruggs AM, Donaghy J, Horowitz JC, Zaslona Z, Przybranowski S, White ES and Peters-Golden M: Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 4(e621)2013.PubMed/NCBI View Article : Google Scholar | |
Coward WR, Watts K, Feghali-Bostwick CA, Knox A and Pang L: Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol Cell Biol. 29:4325–4339. 2009.PubMed/NCBI View Article : Google Scholar | |
Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N and Abraham E: miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 207:1589–1597. 2010.PubMed/NCBI View Article : Google Scholar | |
Bahudhanapati H, Tan J, Dutta JA, Strock SB, Sembrat J, Àlvarez D, Rojas M, Jäger B, Prasse A, Zhang Y and Kass DJ: MicroRNA-144-3p targets relaxin/insulin-like family peptide receptor 1 (RXFP1) expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Biol Chem. 294:5008–5022. 2019.PubMed/NCBI View Article : Google Scholar | |
Kuwano K, Araya J, Hara H, Minagawa S, Takasaka N, Ito S, Kobayashi K and Nakayama K: Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig. 54:397–406. 2016.PubMed/NCBI View Article : Google Scholar | |
Itakura E, Kishi C, Inoue K and Mizushima N: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 19:5360–5372. 2008.PubMed/NCBI View Article : Google Scholar | |
Ryter SW, Bhatia D and Choi ME: Autophagy: A lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid Redox Signal. 30:138–159. 2019.PubMed/NCBI View Article : Google Scholar | |
Shivshankar P, Brampton C, Miyasato S, Kasper M, Thannickal VJ and Le Saux CJ: Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am J Respir Cell Mol Biol. 47:28–36. 2012.PubMed/NCBI View Article : Google Scholar | |
Lawrence J and Nho R: The role of the mammalian target of Rapamycin (mTOR) in pulmonary fibrosis. Int J Mol Sci. 19(778)2018.PubMed/NCBI View Article : Google Scholar | |
Romero Y, Bueno M, Ramirez R, Álvarez D, Sembrat JC, Goncharova EA, Rojas M, Selman M, Mora AL and Pardo A: mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell. 15:1103–1112. 2016.PubMed/NCBI View Article : Google Scholar | |
Nho RS and Hergert P: IPF fibroblasts are desensitized to type I collagen matrix-induced cell death by suppressing low autophagy via aberrant Akt/mTOR kinases. PLoS One. 9(e94616)2014.PubMed/NCBI View Article : Google Scholar | |
Zhao H, Wang Y, Qiu T, Liu W and Yao P: Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta. 502:139–147. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu T, Ullenbruch M, Young CY, Yu H, Ding L, Xaubet A, Pereda J, Feghali-Bostwick CA, Bitterman PB, Henke CA, et al: Telomerase and telomere length in pulmonary fibrosis. Am J Respir Cell Mol Biol. 49:260–268. 2013.PubMed/NCBI View Article : Google Scholar | |
Nozaki Y, Liu T, Hatano K, Gharaee-Kermani M and Phan SH: Induction of telomerase activity in fibroblasts from bleomycin-injured lungs. Am J Respir Cell Mol Biol. 23:460–465. 2000.PubMed/NCBI View Article : Google Scholar | |
Schuliga M, Pechkovsky DV, Read J, Waters DW, Blokland KEC, Reid AT, Hogaboam CM, Khalil N, Burgess JK, Prêle CM, et al: Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts. J Cell Mol Med. 22:5847–5861. 2018.PubMed/NCBI View Article : Google Scholar | |
Banerjee ER, Laflamme MA, Papayannopoulou T, Kahn M, Murry CE and Henderson WJ: Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model. PLoS One. 7(e33165)2012.PubMed/NCBI View Article : Google Scholar | |
Li DY, Li RF, Sun DX, Pu DD and Zhang YH: Mesenchymal stem cell therapy in pulmonary fibrosis: A meta-analysis of preclinical studies. Stem Cell Res Ther. 12(461)2021.PubMed/NCBI View Article : Google Scholar | |
Cai SX, Liu AR, Chen S, He HL, Chen QH, Xu JY, Pan C, Yang Y, Guo FM, Huang YZ, et al: Activation of Wnt/β-catenin signalling promotes mesenchymal stem cells to repair injured alveolar epithelium induced by lipopolysaccharide in mice. Stem Cell Res Ther. 6(65)2015.PubMed/NCBI View Article : Google Scholar | |
Liu M, Ren D, Wu D, Zheng J and Tu W: Stem cell and idiopathic pulmonary fibrosis: Mechanisms and treatment. Curr Stem Cell Res Ther. 10:466–476. 2015.PubMed/NCBI View Article : Google Scholar | |
Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW and Hogan BL: Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 123:3025–3036. 2013.PubMed/NCBI View Article : Google Scholar | |
Wu H, Yu Y, Huang H, Hu Y, Fu S, Wang Z, Shi M, Zhao X, Yuan J, Li J, et al: Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell. 180:107–121.e17. 2020.PubMed/NCBI View Article : Google Scholar | |
Kobayashi Y, Tata A, Konkimalla A, Katsura H, Lee RF, Ou J, Banovich NE, Kropski JA and Tata PR: Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 22:934–946. 2020.PubMed/NCBI View Article : Google Scholar | |
Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, Pinsky DJ, Peters-Golden M and Lama VN: Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol. 181:4389–4396. 2008.PubMed/NCBI View Article : Google Scholar | |
Gao J, Dennis JE, Muzic RF, Lundberg M and Caplan AI: The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 169:12–20. 2001.PubMed/NCBI View Article : Google Scholar | |
Toonkel RL, Hare JM, Matthay MA and Glassberg MK: Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. Am J Respir Crit Care Med. 188:133–140. 2013.PubMed/NCBI View Article : Google Scholar | |
Álvarez D, Levine M and Rojas M: Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: Current position. Stem Cells Cloning. 8:61–65. 2015.PubMed/NCBI View Article : Google Scholar | |
Cárdenes N, Álvarez D, Sellarés J, Peng Y, Corey C, Wecht S, Nouraie SM, Shanker S, Sembrat J, Bueno M, et al: Senescence of bone marrow-derived mesenchymal stem cells from patients with idiopathic pulmonary fibrosis. Stem Cell Res Ther. 9(257)2018.PubMed/NCBI View Article : Google Scholar | |
Lee SH, Jang AS, Kim YE, Cha JY, Kim TH, Jung S, Park SK, Lee YK, Won JH, Kim YH and Park CS: Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir Res. 11(16)2010.PubMed/NCBI View Article : Google Scholar | |
Margaritopoulos GA, Giannarakis I, Siafakas NM and Antoniou KM: An update on idiopathic pulmonary fibrosis. Panminerva Med. 55:109–120. 2013.PubMed/NCBI | |
van Deursen JM: The role of senescent cells in ageing. Nature. 509:439–446. 2014.PubMed/NCBI View Article : Google Scholar | |
Blokland K, Waters DW, Schuliga M, Read J, Pouwels SD, Grainge CL, Jaffar J, Westall G, Mutsaers SE, Prêle CM, et al: Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing. Pharmaceutics. 12(389)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang LM, Zhang J, Zhang Y, Fei C, Wang L, Yi ZW and Zhang ZQ: Interleukin-18 promotes fibroblast senescence in pulmonary fibrosis through down-regulating Klotho expression. Biomed Pharmacother. 113(108756)2019.PubMed/NCBI View Article : Google Scholar | |
Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, Oberg AL, Birch J, Salmonowicz H, Zhu Y, et al: Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 8(14532)2017.PubMed/NCBI View Article : Google Scholar | |
Muñoz-Espín D and Serrano M: Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol. 15:482–496. 2014.PubMed/NCBI View Article : Google Scholar | |
Bascands JL and Schanstra JP: Obstructive nephropathy: Insights from genetically engineered animals. Kidney Int. 68:925–937. 2005.PubMed/NCBI View Article : Google Scholar | |
Adnot S, Breau M and Houssaini A: PAI-1: A new target for controlling lung-cell senescence and fibrosis? Am J Respir Cell Mol Biol. 62:271–272. 2020.PubMed/NCBI View Article : Google Scholar | |
Jiang C, Liu G, Luckhardt T, Antony V, Zhou Y, Carter AB, Thannickal VJ and Liu RM: Serpine 1 induces alveolar type II cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease. Aging Cell. 16:1114–1124. 2017.PubMed/NCBI View Article : Google Scholar | |
Ueno M, Maeno T, Nomura M, Aoyagi-Ikeda K, Matsui H, Hara K, Tanaka T, Iso T, Suga T and Kurabayashi M: Hypoxia-inducible factor-1α mediates TGF-β-induced PAI-1 production in alveolar macrophages in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 300:L740–L752. 2011.PubMed/NCBI View Article : Google Scholar | |
Goliwas KF and Deshane JS: Extracellular vesicles: Bidirectional accelerators of cellular senescence in fibrosis? Am J Respir Cell Mol Biol. 63:547–548. 2020.PubMed/NCBI View Article : Google Scholar | |
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al: Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 4(27066)2015.PubMed/NCBI View Article : Google Scholar | |
Kuwano K, Kunitake R, Kawasaki M, Nomoto Y, Hagimoto N, Nakanishi Y and Hara N: P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 154:477–483. 1996.PubMed/NCBI View Article : Google Scholar | |
Chilosi M, Carloni A, Rossi A and Poletti V: Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res. 162:156–173. 2013.PubMed/NCBI View Article : Google Scholar | |
Alimbetov D, Davis T, Brook AJ, Cox LS, Faragher RG, Nurgozhin T, Zhumadilov Z and Kipling D: Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. Biogerontology. 17:305–315. 2016.PubMed/NCBI View Article : Google Scholar | |
Willis BC and Borok Z: TGF-beta-induced EMT: Mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 293:L525–L534. 2007.PubMed/NCBI View Article : Google Scholar | |
He W, Tan R, Dai C, Li Y, Wang D, Hao S, Kahn M and Liu Y: Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/beta-catenin signaling. J Biol Chem. 285:24665–24675. 2010.PubMed/NCBI View Article : Google Scholar | |
Liu J, Peng D, You J, Zhou O, Qiu H, Hao C, Chen H, Fu Z and Zou L: Type 2 alveolar epithelial cells differentiated from human umbilical cord mesenchymal stem cells alleviate mouse pulmonary fibrosis through β-catenin-regulated cell apoptosis. Stem Cells Dev. 30:660–670. 2021.PubMed/NCBI View Article : Google Scholar | |
Kadota T, Yoshioka Y, Fujita Y, Araya J, Minagawa S, Hara H, Miyamoto A, Suzuki S, Fujimori S, Kohno T, et al: Extracellular vesicles from fibroblasts induce epithelial-cell senescence in pulmonary fibrosis. Am J Respir Cell Mol Biol. 63:623–636. 2020.PubMed/NCBI View Article : Google Scholar | |
Yin Y, Chen H, Wang Y, Zhang L and Wang X: Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles. 10(e12154)2021.PubMed/NCBI View Article : Google Scholar | |
Wang L, Chen R, Li G, Wang Z, Liu J, Liang Y and Liu JP: FBW7 mediates senescence and pulmonary fibrosis through telomere uncapping. Cell Metab. 32:860–877.e9. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT, Funari VA, Gokey JJ, et al: Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 1(e90558)2016.PubMed/NCBI View Article : Google Scholar | |
Shenderov K, Collins SL, Powell JD and Horton MR: Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest. 131(e143226)2021.PubMed/NCBI View Article : Google Scholar | |
Ying H, Fang M, Hang QQ, Chen Y, Qian X and Chen M: Pirfenidone modulates macrophage polarization and ameliorates radiation-induced lung fibrosis by inhibiting the TGF-β1/Smad3 pathway. J Cell Mol Med. 25:8662–8675. 2021.PubMed/NCBI View Article : Google Scholar | |
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A and Ryerson CJ: Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther. 222(107798)2021.PubMed/NCBI View Article : Google Scholar | |
Wang J, Hu K, Cai X, Yang B, He Q, Wang J and Weng Q: Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B. 12:18–32. 2022.PubMed/NCBI View Article : Google Scholar | |
Birch J and Gil J: Senescence and the SASP: Many therapeutic avenues. Genes Dev. 34:1565–1576. 2020.PubMed/NCBI View Article : Google Scholar | |
Veret D and Brondello JM: Senotherapy: Advances and new clinical perspectives. Med Sci (Paris). 36:1135–1142. 2020.PubMed/NCBI View Article : Google Scholar : (In French). | |
Liao Z, Yeo HL, Wong SW and Zhao Y: Cellular Senescence: Mechanisms and Therapeutic Potential. Biomedicines. 9(1769)2021.PubMed/NCBI View Article : Google Scholar | |
Chitra P, Saiprasad G, Manikandan R and Sudhandiran G: Berberine inhibits Smad and non-Smad signaling cascades and enhances autophagy against pulmonary fibrosis. J Mol Med (Berl). 93:1015–1031. 2015.PubMed/NCBI View Article : Google Scholar | |
Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J and Codogno P: Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem. 281:8518–8527. 2006.PubMed/NCBI View Article : Google Scholar | |
Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng DS, Lane KB, Blackwell TR, Xu C, Markin C, Ware LB, et al: Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: Association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol. 294:L1119–L1126. 2008.PubMed/NCBI View Article : Google Scholar | |
Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P, Koch M, Lang G, Fink L, Bohle RM, Seeger W, et al: Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 178:838–846. 2008.PubMed/NCBI View Article : Google Scholar | |
Perera UE, Organ L, Dewage S, Derseh HB, Stent A and Snibson KJ: Increased levels of ER stress and apoptosis in a sheep model for pulmonary fibrosis are alleviated by in vivo blockade of the KCa3.1 Ion Channel. Can Respir J. 2021(6683195)2021.PubMed/NCBI View Article : Google Scholar | |
Liu SH, Yang CC, Chan DC, Wu CT, Chen LP, Huang JW, Hung KY and Chiang CK: Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget. 7:22116–22127. 2016.PubMed/NCBI View Article : Google Scholar | |
Knoell J, Chillappagari S, Knudsen L, Korfei M, Dartsch R, Jonigk D, Kuehnel MP, Hoetzenecker K, Guenther A and Mahavadi P: PACS2-TRPV1 axis is required for ER-mitochondrial tethering during ER stress and lung fibrosis. Cell Mol Life Sci. 79(151)2022.PubMed/NCBI View Article : Google Scholar | |
Pao HP, Liao WI, Tang SE, Wu SY, Huang KL and Chu SJ: Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via Up-regulating Claudin-4 expression. Front Immunol. 12(674316)2021.PubMed/NCBI View Article : Google Scholar | |
Qin X, Lin X, Liu L, Li Y, Li X, Deng Z, Chen H, Chen H, Niu Z, Li Z and Hu Y: Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner. J Cell Mol Med. 25:4466–4477. 2021.PubMed/NCBI View Article : Google Scholar | |
Le Saux CJ, Davy P, Brampton C, Ahuja SS, Fauce S, Shivshankar P, Nguyen H, Ramaseshan M, Tressler R, Pirot Z, et al: A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS One. 8(e58423)2013.PubMed/NCBI View Article : Google Scholar | |
Calado RT, Yewdell WT, Wilkerson KL, Regal JA, Kajigaya S, Stratakis CA and Young NS: Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood. 114:2236–2243. 2009.PubMed/NCBI View Article : Google Scholar | |
Arish N, Petukhov D and Wallach-Dayan SB: The role of telomerase and telomeres in interstitial lung diseases: From molecules to clinical implications. Int J Mol Sci. 20(2996)2019.PubMed/NCBI View Article : Google Scholar | |
Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, Hardy N, Mihalek AD, Lingala S, Kim YJ, et al: Danazol treatment for telomere diseases. N Engl J Med. 374:1922–1931. 2016.PubMed/NCBI View Article : Google Scholar | |
Chambers DC, Lutzky VP, Apte SH, Godbolt D, Feenstra J and Mackintosh J: Successful treatment of telomeropathy-related interstitial lung disease with immunosuppression and danazol. Respirol Case Rep. 8(e607)2020.PubMed/NCBI View Article : Google Scholar | |
Dakhlallah D, Batte K, Wang Y, Cantemir-Stone CZ, Yan P, Nuovo G, Mikhail A, Hitchcock CL, Wright VP, Nana-Sinkam SP, et al: Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 187:397–405. 2013.PubMed/NCBI View Article : Google Scholar | |
Escargueil AE, Soares DG, Salvador M, Larsen AK and Henriques JA: What histone code for DNA repair? Mutat Res. 658:259–270. 2008.PubMed/NCBI View Article : Google Scholar | |
Guo W, Shan B, Klingsberg RC, Qin X and Lasky JA: Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 297:L864–L870. 2009.PubMed/NCBI View Article : Google Scholar | |
Pang M and Zhuang S: Histone deacetylase: A potential therapeutic target for fibrotic disorders. J Pharmacol Exp Ther. 335:266–272. 2010.PubMed/NCBI View Article : Google Scholar | |
Korfei M, Skwarna S, Henneke I, MacKenzie B, Klymenko O, Saito S, Ruppert C, von der Beck D, Mahavadi P, Klepetko W, et al: Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax. 70:1022–1032. 2015.PubMed/NCBI View Article : Google Scholar | |
Sanders YY, Hagood JS, Liu H, Zhang W, Ambalavanan N and Thannickal VJ: Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur Respir J. 43:1448–1458. 2014.PubMed/NCBI View Article : Google Scholar | |
Korfei M, Stelmaszek D, MacKenzie B, Skwarna S, Chillappagari S, Bach AC, Ruppert C, Saito S, Mahavadi P, Klepetko W, et al: Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. PLoS One. 13(e207915)2018.PubMed/NCBI View Article : Google Scholar | |
Mora AL, Rojas M, Pardo A and Selman M: Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov. 16:755–772. 2017.PubMed/NCBI View Article : Google Scholar | |
Coward WR, Feghali-Bostwick CA, Jenkins G, Knox AJ and Pang L: A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis. FASEB J. 28:3183–3196. 2014.PubMed/NCBI View Article : Google Scholar | |
Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T and Tu Y: Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 10(670)2019.PubMed/NCBI View Article : Google Scholar | |
Liu S, Chen X, Zhang S, Wang X, Du X, Chen J and Zhou G: miR-106b-5p targeting SIX1 inhibits TGF-β1-induced pulmonary fibrosis and epithelial-mesenchymal transition in asthma through regulation of E2F1. Int J Mol Med. 47(04855)2021.PubMed/NCBI View Article : Google Scholar | |
Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, Saito N, Fujita Y, Kurita Y, Kobayashi K, et al: Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res. 17(107)2016.PubMed/NCBI View Article : Google Scholar | |
Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, Locy ML, Ravi S, Deshane J, Mannon RB, et al: Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 24:1121–1127. 2018.PubMed/NCBI View Article : Google Scholar | |
Akamata K, Wei J, Bhattacharyya M, Cheresh P, Bonner MY, Arbiser JL, Raparia K, Gupta MP, Kamp DW and Varga J: SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget. 7:69321–69336. 2016.PubMed/NCBI View Article : Google Scholar | |
Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, et al: Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. Ebiomedicine. 40:554–563. 2019.PubMed/NCBI View Article : Google Scholar | |
Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W, Alsafadi HN, Ota C, Costa R, Schiller HB, Lindner M, et al: Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J. 50(1602367)2017.PubMed/NCBI View Article : Google Scholar | |
Hohmann MS, Habiel DM, Coelho AL, Verri WJ and Hogaboam CM: Quercetin enhances ligand-induced apoptosis in senescent idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis in vivo. Am J Respir Cell Mol Biol. 60:28–40. 2019.PubMed/NCBI View Article : Google Scholar | |
Feng F, Wang Z, Li R, Wu Q, Gu C, Xu Y, Peng W, Han D, Zhou X, Wu J and He H: Citrus alkaline extracts prevent fibroblast senescence to ameliorate pulmonary fibrosis via activation of COX-2. Biomed Pharmacother. 112(108669)2019.PubMed/NCBI View Article : Google Scholar | |
Shentu TP, Huang TS, Cernelc-Kohan M, Chan J, Wong SS, Espinoza CR, Tan C, Gramaglia I, van der Heyde H, Chien S and Hagood JS: Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Sci Rep. 7(18052)2017.PubMed/NCBI View Article : Google Scholar | |
Kadota T, Fujita Y, Araya J, Watanabe N, Fujimoto S, Kawamoto H, Minagawa S, Hara H, Ohtsuka T, Yamamoto Y, et al: Human bronchial epithelial cell-derived extracellular vesicle therapy for pulmonary fibrosis via inhibition of TGF-β-WNT crosstalk. J Extracell Vesicles. 10(e12124)2021.PubMed/NCBI View Article : Google Scholar | |
Yang S, Liu P, Jiang Y, Wang Z, Dai H and Wang C: Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 9(639657)2021.PubMed/NCBI View Article : Google Scholar | |
Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, Yerkovich ST, Khalil D, Atkinson KM and Hopkins PM: A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 19:1013–1018. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Yan Z, Liu Y, Zhang Y, Shi J, Li J and Ji F: Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: A systematic review and implication for clinical application. Stem Cell Res Ther. 12(470)2021.PubMed/NCBI View Article : Google Scholar | |
Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A, Zissimopoulos A, Boussios N, Dardzinski B, Gritzalis D, et al: A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med. 11(171)2013.PubMed/NCBI View Article : Google Scholar | |
Serrano-Mollar A, Gay-Jordi G, Guillamat-Prats R, Closa D, Hernandez-Gonzalez F, Marin P, Burgos F, Martorell J, Sánchez M, Arguis P, et al: Safety and tolerability of alveolar type ii cell transplantation in idiopathic pulmonary fibrosis. Chest. 150:533–543. 2016.PubMed/NCBI View Article : Google Scholar | |
Glassberg MK, Minkiewicz J, Toonkel RL, Simonet ES, Rubio GA, DiFede D, Shafazand S, Khan A, Pujol MV, LaRussa VF, et al: Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): A phase I safety clinical trial. Chest. 151:971–981. 2017.PubMed/NCBI View Article : Google Scholar | |
Serrano-Mollar A, Nacher M, Gay-Jordi G, Closa D, Xaubet A and Bulbena O: Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am J Respir Crit Care Med. 176:1261–1268. 2007.PubMed/NCBI View Article : Google Scholar | |
Poggio HA, Antunes MA, Rocha NN, Kitoko JZ, Morales MM, Olsen PC, Lopes-Pacheco M, Cruz FF and Rocco PRM: Impact of one versus two doses of mesenchymal stromal cells on lung and cardiovascular repair in experimental emphysema. Stem Cell Res Ther. 9(296)2018.PubMed/NCBI View Article : Google Scholar |