1
|
Wong MC, Huang J, Lok V, Wang J, Fung F,
Ding H and Zheng ZJ: Differences in incidence and mortality trends
of colorectal cancer worldwide based on sex, age, and anatomic
location. Clin Gastroenterol Hepatol. 19:955–966.e61.
2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Xie YH, Chen YX and Fang JY: Comprehensive
review of targeted therapy for colorectal cancer. Signal Transduct
Target Ther. 5:1–30. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Peravali R and Hall N: Colorectal cancer:
Features and investigation. Medicine. 43:299–302. 2015.
|
4
|
Simon K: Colorectal cancer development and
advances in screening. Clin Interv Aging. 11:967–976.
2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Martinez-Outschoorn UE, Peiris-Pagés M,
Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A
therapeutic perspective. Nat Rev Clin Oncol. 14:11–31.
2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Hashim NAA, Ab-Rahim S, Ngah WZW, Nathan
S, Ab Mutalib NS, Sagap I, Jamal ARA and Mazlan M: Global
metabolomics profiling of colorectal cancer in Malaysian patients.
Bioimpacts. 11:33–43. 2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Pedley AM and Benkovic SJ: A new view into
the regulation of purine metabolism: The purinosome. Trends Biochem
Sci. 42:141–154. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Di Virgilio F and Adinolfi E:
Extracellular purines, purinergic receptors and tumor growth.
Oncogene. 36:293–303. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Bester AC, Roniger M, Oren YS, Im MM,
Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS and Kerem B:
Nucleotide deficiency promotes genomic instability in early stages
of cancer development. Cell. 145:435–446. 2011.PubMed/NCBI View Article : Google Scholar
|
10
|
Yamaoka T, Kondo M, Honda S, Iwahana H,
Moritani M, Ii S, Yoshimoto K and Itakura M:
Amidophosphoribosyltransferase limits the rate of cell
growth-linked de novo purine biosynthesis in the presence of
constant capacity of salvage purine biosynthesis. J Biol Chem.
272:17719–17725. 1997.PubMed/NCBI View Article : Google Scholar
|
11
|
Yin J, Ren W, Huang X, Deng J, Li T and
Yin Y: Potential mechanisms connecting purine metabolism and cancer
therapy. Front Immunol. 9(1697)2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Rosenthal EL, Chung TK, Parker WB, Allan
PW, Clemons LL, Lowman D, Hong J, Hunt FR, Richman J, Conry RM, et
al: Phase I dose-escalating trial of Escherichia coli purine
nucleoside phosphorylase and fludarabine gene therapy for advanced
solid tumors. Ann Oncol. 26:1481–1487. 2015.PubMed/NCBI View Article : Google Scholar
|
13
|
dos Santos-Rodrigues A, Grañé-Boladeras N,
Bicket A and Coe IR: Nucleoside transporters in the purinome.
Neurochem Int. 73:229–237. 2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Cass CE, Young JD, Baldwin SA, Cabrita MA,
Graham KA, Griffiths M, Jennings LL, Mackey JR, Ng AM, Ritzel MW,
et al: Nucleoside transporters of mammalian cells. Pharm
Biotechnol. 12:313–352. 2002.PubMed/NCBI View Article : Google Scholar
|
15
|
Altaweraqi RA, Yao SY, Smith KM, Cass CE
and Young JD: HPLC reveals novel features of nucleoside and
nucleobase homeostasis, nucleoside metabolism and nucleoside
transport. Biochim Biophys Acta Biomembr.
1862(183247)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Naes SM, Ab-Rahim S, Mazlan M and Rahman
AA: Equilibrative nucleoside transporter 2: Properties and
physiological roles. Biomed Res Int. 3(5197626)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Young JD, Yao SY, Baldwin JM, Cass CE and
Baldwin SA: The human concentrative and equilibrative nucleoside
transporter families, SLC28 and SLC29. Mol Aspects Med. 34:529–547.
2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Tang PC, Yang C, Li RWS, Lee SMY, Hoi MPM,
Chan SW, Kwan YW, Tse CM and Leung GPH: Inhibition of human
equilibrative nucleoside transporters by 4-((4-(2-fluorophenyl)
piperazin-1-yl)
methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine. Eur J
Pharmacol. 791:544–551. 2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Phua LC, Mal M, Koh PK, Cheah PY, Chan ECY
and Ho HK: Investigating the role of nucleoside transporters in the
resistance of colorectal cancer to 5-fluorouracil therapy. Cancer
Chemother Pharmacol. 71:817–823. 2013.PubMed/NCBI View Article : Google Scholar
|
20
|
Al-Tawfiq JA, Al-Homoud AH and Memish ZA:
Remdesivir as a possible therapeutic option for the COVID-19.
Travel Med Infect Dis. 34(101615)2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Scopes RK: Enzyme activity and assays. e
LS. 2001.
|
22
|
Gatzidou E, Mantzourani M, Giaginis C,
Giagini A, Patsouris E, Kouraklis G and Theocharis S: Augmenter of
liver regeneration gene expression in human colon cancer cell lines
and clinical tissue samples. J BUON. 20:84–91. 2015.PubMed/NCBI
|
23
|
Yusof HM, Ab-Rahim S, Ngah WZW, Nathan S,
Jamal ARA and Mazlan M: Metabolomic characterization of colorectal
cancer cell lines highlighting stage-specific alterations during
cancer progression. Bioimpacts. 11:147–156. 2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Bustin SA, Benes V, Garson JA, Hellemans
J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL,
et al: The MIQE guidelines: Minimum information for publication of
quantitative real-time PCR experiments. Clin Chem. 55:611–622.
2009.PubMed/NCBI View Article : Google Scholar
|
25
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative CT method. Nat Protoc.
3:1101–1108. 2008.PubMed/NCBI View Article : Google Scholar
|
26
|
Brown DG, Rao S, Weir TL, O'Malia J, Bazan
M, Brown RJ and Ryan EP: Metabolomics and metabolic pathway
networks from human colorectal cancers, adjacent mucosa, and stool.
Cancer Metab. 4(11)2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Long Y, Sanchez-Espiridion B, Lin M, White
L, Mishra L, Raju GS, Kopetz S, Eng C, Hildebrandt MAT, Chang DW,
et al: Global and targeted serum metabolic profiling of colorectal
cancer progression. Cancer. 123:4066–4074. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Luo X, Yu H, Song Y and Sun T: Integration
of metabolomic and transcriptomic data reveals metabolic pathway
alteration in breast cancer and impact of related signature on
survival. J Cell Physiol. 234:13021–13031. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Sahu D, Lotan Y, Wittmann B, Neri B and
Hansel DE: Metabolomics analysis reveals distinct profiles of
nonmuscle-invasive and muscle-invasive bladder cancer. Cancer Med.
6:2106–2120. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhu J, Djukovic D, Deng L, Gu H, Himmati
F, Chiorean EG and Raftery D: Colorectal cancer detection using
targeted serum metabolic profiling. J Proteome Res. 13:4120–4130.
2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Garcia-Gil M, Camici M, Allegrini S, Pesi
R, Petrotto E and Tozzi M: Emerging role of purine metabolizing
enzymes in brain function and tumors. Int J Mol Sci.
19(3598)2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Townsend MH, Felsted AM, Ence ZE, Piccolo
SR, Robison RA and O'Neill K: Elevated expression of hypoxanthine
guanine phosphoribosyltransferase within malignant tissue. Cancer
Clin Oncol. 6:19–34. 2017.
|
33
|
Sedano MJ, Ramos EI, Choudhari R, Harrison
AL, Subramani R, Lakshmanaswamy R, Zilaie M and Gadad SS:
Hypoxanthine phosphoribosyl transferase 1 is upregulated, predicts
clinical outcome and controls gene expression in breast cancer.
Cancers (Basel). 12(1522)2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Camici M, Tozzi MG, Allegrini S, Del Corso
A, Sanfilippo O, Daidone MG, De Marco C and Ipata PL: Purine
salvage enzyme activities in normal and neoplastic human tissues.
Cancer Biochem Biophys. 11:201–209. 1990.PubMed/NCBI
|
35
|
Sanfilippo O, Camici M, Tozzi MG, Turriani
M, Faranda A, Ipata P and Silvestrini R: Relationship between the
levels of purine salvage pathway enzymes and clinical/biological
aggressiveness of human colon carcinoma. Cancer Biochem Biophys.
14:57–66. 1994.PubMed/NCBI
|
36
|
Kami K, Fujimori T, Sato H, Sato M,
Yamamoto H, Ohashi Y, Sugiyama N, Ishihama Y, Onozuka H, Ochiai A,
et al: Metabolomic profiling of lung and prostate tumor tissues by
capillary electrophoresis time-of-flight mass spectrometry.
Metabolomics. 9:444–453. 2013.PubMed/NCBI View Article : Google Scholar
|
37
|
Nemkov T, Sun K, Reisz JA, Song A, Yoshida
T, Dunham A, Wither MJ, Francis RO, Roach RC, Dzieciatkowska M, et
al: Hypoxia modulates the purine salvage pathway and decreases red
blood cell and supernatant levels of hypoxanthine during
refrigerated storage. Haematologica. 103:361–372. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Ong ES, Zou L, Li S, Cheah PY, Eu KW and
Ong CN: Metabolic profiling in colorectal cancer reveals signature
metabolic shifts during tumorigenesis. Mol Cell Proteomics 10: doi:
10.1074, 2010.
|
39
|
Durak İ, Cetin R, Devrim E and Ergüder İB:
Effects of black grape extract on activities of DNA turn-over
enzymes in cancerous and non cancerous human colon tissues. Life
Sci. 76:2995–3000. 2005.PubMed/NCBI View Article : Google Scholar
|
40
|
Battelli MG, Polito L, Bortolotti M and
Bolognesi A: Xanthine oxidoreductase in cancer: More than a
differentiation marker. Cancer Med. 5:546–557. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Linder N, Bützow R, Lassus H, Lundin M and
Lundin J: Decreased xanthine oxidoreductase (XOR) is associated
with a worse prognosis in patients with serous ovarian carcinoma.
Gynecol Oncol. 124:311–318. 2012.PubMed/NCBI View Article : Google Scholar
|
42
|
Wang Y, Liu S, Tian S, Du R, Lin T, Xiao
X, Wang R, Chen R, Geng H, Subramanian S, et al: C1QBP regulates
apoptosis of renal cell carcinoma via modulating xanthine
dehydrogenase (XDH) mediated ROS generation. Int J Med Sci.
19:842–857. 2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Linder N, Martelin E, Lundin M, Louhimo J,
Nordling S, Haglund C and Lundin J: Xanthine
oxidoreductase-Clinical significance in colorectal cancer and in
vitro expression of the protein in human colon cancer cells. Eur J
Cancer. 45:648–655. 2009.PubMed/NCBI View Article : Google Scholar
|
44
|
Yuan C, Xu XH, Wang XL, Xu L, Chen Z and
Li YQ: Relationship between serum uric acid and metastatic and
nonmetastatic rectal cancer patients with undergoing no
chemotherapy. Medicine (Baltimore). 95(e5463)2016.PubMed/NCBI View Article : Google Scholar
|
45
|
Dhankhar R, Dahiya K, Sharma TK, Ghalaut
VS, Atri R and Kaushal V: Diagnostic significance of adenosine
deaminase, uric acid and C-reactive protein levels in patients of
head and neck carcinoma. Clin Lab. 57:795–798. 2011.PubMed/NCBI
|
46
|
Fini MA, Elias A, Johnson RJ and Wright
RM: Contribution of uric acid to cancer risk, recurrence, and
mortality. Clin Transl Med. 1:1–15. 2012.PubMed/NCBI View Article : Google Scholar
|
47
|
Shi L, Chen S, Yang L and Li Y: The role
of PD-1 and PD-L1 in T-cell immune suppression in patients with
hematological malignancies. J Hematol Oncol. 6:1–6. 2013.PubMed/NCBI View Article : Google Scholar
|
48
|
Dziaman T, Banaszkiewicz Z, Roszkowski K,
Gackowski D, Wisniewska E, Rozalski R, Foksinski M, Siomek A,
Speina E, Winczura A, et al: 8-Oxo-7, 8-dihydroguanine and uric
acid as efficient predictors of survival in colon cancer patients.
Int J Cancer. 134:376–383. 2014.PubMed/NCBI View Article : Google Scholar
|
49
|
Gamage CD, Park SY, Yang Y, Zhou R, Taş İ,
Bae WK, Kim KK, Shim JH, Kim E, Yoon G and Kim H:
Deoxypodophyllotoxin exerts anti-cancer effects on colorectal
cancer cells through induction of apoptosis and suppression of
tumorigenesis. Int J Mol Sci. 20(2612)2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Trachootham D, Alexandre J and Huang P:
Targeting cancer cells by ROS-mediated mechanisms: A radical
therapeutic approach? Nat Rev Drug Dis. 8:579–591. 2009.PubMed/NCBI View Article : Google Scholar
|
51
|
Lu H, Li X, Lu Y, Qiu S and Fan Z: ASCT2
(SLC1A5) is an EGFR-associated protein that can be co-targeted by
cetuximab to sensitize cancer cells to ROS-induced apoptosis.
Cancer Lett. 381:23–30. 2016.PubMed/NCBI View Article : Google Scholar
|
52
|
Ray PD, Huang BW and Tsuji Y: Reactive
oxygen species (ROS) homeostasis and redox regulation in cellular
signaling. Cell Signal. 24:981–990. 2012.PubMed/NCBI View Article : Google Scholar
|
53
|
Dueregger A, Guggenberger F, Barthelmes J,
Stecher G, Schuh M, Intelmann D, Abel G, Haunschild J, Klocker H,
Ramoner R and Sampson N: Attenuation of nucleoside and anti-cancer
nucleoside analog drug uptake in prostate cancer cells by
Cimicifuga racemosa extract BNO-1055. Phytomedicine. 20:1306–1314.
2013.PubMed/NCBI View Article : Google Scholar
|
54
|
Al-Abdulla R, Perez-Silva L, Abete L,
Romero MR, Briz O and Marin JJ: Unraveling ‘The Cancer Genome
Atlas’ information on the role of SLC transporters in anticancer
drug uptake. Expert Rev Clin Pharmacol. 12:329–341. 2019.PubMed/NCBI View Article : Google Scholar
|
55
|
Mukhopadhya I, Murray GI, Berry S, Thomson
J, Frank B, Gwozdz G, Ekeruche-Makinde J, Shattock R, Kelly C,
Iannelli F, et al: Drug transporter gene expression in human
colorectal tissue and cell lines: Modulation with antiretrovirals
for microbicide optimization. J Antimicrob Chemother. 71:372–386.
2015.PubMed/NCBI View Article : Google Scholar
|
56
|
Liu Y, Zuo T, Zhu X, Ahuja N and Fu T:
Differential expression of hENT1 and hENT2 in colon cancer cell
lines. Genet Mol Res 16: doi: 10.4238, 2017.
|
57
|
Pastor-Anglada M and Pérez-Torras S:
Emerging roles of nucleoside transporters. Front Pharmacol.
9(606)2018.PubMed/NCBI View Article : Google Scholar
|
58
|
Senyavina N and Tonevitskaya S: Effect of
hypoxanthine on functional activity of nucleoside transporters ENT1
and ENT2 in caco-2 polar epithelial intestinal cells. Bull Exp Biol
Med. 160:160–164. 2015.PubMed/NCBI View Article : Google Scholar
|
59
|
Cho HD, Lee JH, Moon KD, Park KH, Lee MK
and Seo KI: Auriculasin-induced ROS causes prostate cancer cell
death via induction of apoptosis. Food Chem Toxicol. 111:660–669.
2018.PubMed/NCBI View Article : Google Scholar
|
60
|
Pan H, Wang BH, Lv W, Jiang Y and He L:
Esculetin induces apoptosis in human gastric cancer cells through a
cyclophilin D-mediated mitochondrial permeability transition pore
associated with ROS. Chem Biol Interact. 242:51–60. 2015.PubMed/NCBI View Article : Google Scholar
|
61
|
García V, Lara-Chica M, Cantarero I,
Sterner O, Calzado MA and Muñoz E: Galiellalactone induces cell
cycle arrest and apoptosis through the ATM/ATR pathway in prostate
cancer cells. Oncotarget. 7:4490–4506. 2016.PubMed/NCBI View Article : Google Scholar
|
62
|
Jung SN, Shin DS, Kim HN, Jeon YJ, Yun J,
Lee YJ, Kang JS, Han DC and Kwon BM: Sugiol inhibits STAT3 activity
via regulation of transketolase and ROS-mediated ERK activation in
DU145 prostate carcinoma cells. Biochem Pharmacol. 97:38–50.
2015.PubMed/NCBI View Article : Google Scholar
|
63
|
Fruehauf JP and Meyskens FL Jr: Reactive
oxygen species: A breath of life or death? Clin Cancer Res.
13:789–794. 2007.PubMed/NCBI View Article : Google Scholar
|
64
|
Pelin M, Fusco L, Martín C, Sosa S,
Frontiñán-Rubio J, González-Domínguez JM, Vázquez E, Prato M and
Tubaro A: Graphene and graphene oxide induce ROS production in
human HaCaT skin keratinocytes: The role of xanthine oxidase and
NADH dehydrogenase. Nanoscale. 10:11820–11830. 2018.PubMed/NCBI View Article : Google Scholar
|
65
|
Kim K, Yeo SG and Yoo BC: Identification
of hypoxanthine and phosphoenolpyruvic Acid as serum markers of
chemoradiotherapy response in locally advanced rectal cancer.
Cancer Res Treat. 47:78–89. 2015.PubMed/NCBI View Article : Google Scholar
|
66
|
Zhang A, Sun H, Xu H, Qiu S and Wang X:
Cell metabolomics. OMICS. 17:495–501. 2013.PubMed/NCBI View Article : Google Scholar
|