1
|
Sudar-Milovanovic E, Gluvic Z, Obradovic
M, Zaric B and Isenovic ER: Tryptophan metabolism in
atherosclerosis and diabetes. Curr Med Chem. 29:99–113.
2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Sadok I and Staniszewska M:
Electrochemical determination of kynurenine pathway
metabolites-challenges and perspectives. Sensors (Basel).
21:2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Ramprasath T, Han YM, Zhang D, Yu CJ and
Zou MH: Tryptophan catabolism and inflammation: A novel therapeutic
target for aortic diseases. Front Immunol.
12(731701)2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Silvano A, Seravalli V, Strambi N, Cecchi
M, Tartarotti E, Parenti A and Tommaso MD: Tryptophan metabolism
and immune regulation in the human placenta. J Reprod Immunol.
147(103361)2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Kudo Y, Boyd CA, Sargent IL and Redman CW:
Decreased tryptophan catabolism by placental indoleamine
2,3-dioxygenase in preeclampsia. Am J Obstet Gynecol. 188:719–726.
2003.PubMed/NCBI View Article : Google Scholar
|
6
|
Sorgdrager FJH, Naude PJW, Kema IP, Nollen
EA and Deyn PP: Tryptophan metabolism in inflammaging: From
biomarker to therapeutic target. Front Immunol.
10(2565)2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Favre D, Mold J, Hunt PW, Kanwar B, Loke
P, Seu L, Barbour JD, Lowe MM, Jayawardene A, Aweeka F, et al:
Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the
balance of TH17 to regulatory T cells in HIV disease. Sci Transl
Med. 2(32ra36)2010.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhai L, Ladomersky E, Lenzen A, Nguyen B,
Patel R, Lauing KL, Wu M and Wainwright DA: IDO1 in cancer: A
Gemini of immune checkpoints. Cell Mol Immunol. 15:447–457.
2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Fallarino F, Vacca C, Orabona C,
Belladonna ML, Bianchi R, Marshall B, Keskin DB, Mellor AL,
Fioretti MC, Grohmann U, et al: Functional expression of
indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells.
Int Immunol. 14:65–68. 2002.PubMed/NCBI View Article : Google Scholar
|
10
|
Alahdal M, Zhang H, Huang R, Sun W, Deng
Z, Duan L, Ouyang H and Wang D: Potential efficacy of dendritic
cell immunomodulation in the treatment of osteoarthritis.
Rheumatology (Oxford). 60:507–517. 2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Chen D, Koropatnick J, Jiang N, Zheng X,
Zhang X, Wang H, Yuan K, Siu KS, Shunnar A, Way C, et al: Targeted
siRNA silencing of indoleamine 2,3-dioxygenase in
antigen-presenting cells using mannose-conjugated liposomes: A
novel strategy for treatment of melanoma. J Immunother. 37:123–134.
2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Nam JH, Lee JH, Choi SY, Jung NC, Song JY,
Seo HG and Lim DS: Functional ambivalence of dendritic cells:
Tolerogenicity and immunogenicity. Int J Mol Sci.
22:2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Belladonna ML, Orabona C, Grohmann U and
Puccetti P: TGF-beta and kynurenines as the key to infectious
tolerance. Trends Mol Med. 15:41–49. 2009.PubMed/NCBI View Article : Google Scholar
|
14
|
O'Neill LAJ and Pearce EJ:
Immunometabolism governs dendritic cell and macrophage function. J
Exp Med. 213:15–23. 2016.PubMed/NCBI View Article : Google Scholar
|
15
|
Wculek SK, Khouili SC, Priego E,
Heras-Murillo I and Sancho D: Metabolic control of dendritic cell
functions: Digesting information. Front Immunol.
10(775)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Shen Z, Reznikoff G, Dranoff G and Rock
KL: Cloned dendritic cells can present exogenous antigens on both
MHC class I and class II molecules. J Immunol. 158:2723–2730.
1997.PubMed/NCBI
|
17
|
Chen S, Li X, Zhang W, Zi M and Xu Y:
Inflammatory compound lipopolysaccharide promotes the survival of
GM-CSF cultured dendritic cell via PI3 kinase-dependent
upregulation of Bcl-x. Immunol Cell Biol. 96:912–921.
2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Sun L, Zhang W, Zhao L, Zhao Y, Wang F,
Lew AM and Xu Y: Self-tolerance of vascular tissues is broken down
by vascular dendritic cells in response to systemic inflammation to
initiate regional autoinflammation. Front Immunol.
13(823853)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Cole JE, Astola N, Cribbs AP, Goddard ME,
Park I, Green P, Davies AD, Williams OR, Feldmann M and Monaco C:
Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and
its metabolites provide new opportunities for drug development.
Proc Natl Acad Sci USA. 112:13033–13038. 2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Yang HL, Liu HW, Shrestha S, Thiyagarajan
V, Huang HC and Hseu YC: Antrodia salmonea induces apoptosis
and enhances cytoprotective autophagy in colon cancer cells. Aging
(Albany NY). 13:15964–15989. 2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Jurisic V, Srdic-Rajic T, Konjevic G,
Bogdanovic G and Colic M: TNF- α induced apoptosis is accompanied
with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr
Biol. 239:115–122. 2011.PubMed/NCBI View Article : Google Scholar
|
22
|
Zhang W, Zi M, Sun L, Wang F, Chen S, Zhao
Y, Liang S, Hu J, Liu S, Liu L, et al: Cystatin C regulates major
histocompatibility complex-II-peptide presentation and
extracellular signal-regulated kinase-dependent polarizing cytokine
production by bone marrow-derived dendritic cells. Immunol Cell
Biol. 97:916–930. 2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Sun L, Rautela J, Delconte RB,
Souza-Fonseca-Guimaraes F, Carrington EM, Schenk RL, Herold MJ,
Huntington ND, Lew AM, Xu Y and Zhan Y: GM-CSF quantity has a
selective effect on granulocytic vs. monocytic myeloid development
and function. Front Immunol. 9(1922)2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Zhan Y, Vega-Ramos J, Carrington EM,
Villadangos JA, Lew AM and Xu Y: The inflammatory cytokine, GM-CSF,
alters the developmental outcome of murine dendritic cells. Eur J
Immunol. 42:2889–2900. 2012.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang W, Ding Y, Sun L, Hong Q, Sun Y, Han
L, Zi M and Xu Y: Bone marrow-derived inflammatory and steady state
DCs are different in both functions and survival. Cell Immunol.
331:100–109. 2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Jurisic V: Multiomic analysis of cytokines
in immuno-oncology. Expert Rev Proteomics. 17:663–674.
2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Mellor AL, Lemos H and Huang L:
Indoleamine 2,3-dioxygenase and tolerance: Where are we now? Front
Immunol. 8(1360)2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Mellor AL and Munn DH: IDO expression by
dendritic cells: Tolerance and tryptophan catabolism. Nat Rev
Immunol. 4:762–774. 2004.PubMed/NCBI View Article : Google Scholar
|
29
|
Nguyen NT, Kimura A, Nakahama T, Chinen I,
Masuda K, Nohara K, Fujii-Kuriyama Y and Kishimoto T: Aryl
hydrocarbon receptor negatively regulates dendritic cell
immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad
Sci USA. 107:19961–19966. 2010.PubMed/NCBI View Article : Google Scholar
|
30
|
Pallotta MT, Orabona C, Volpi C, Vacca C,
Belladonna ML, Bianchi R, Servillo G, Brunacci C, Calvitti M,
Bicciato S, et al: Indoleamine 2,3-dioxygenase is a signaling
protein in long-term tolerance by dendritic cells. Nat Immunol.
12:870–878. 2011.PubMed/NCBI View Article : Google Scholar
|
31
|
Hwu P, Du MX, Lapointe R, Do M, Taylor MW
and Young HA: Indoleamine 2,3-dioxygenase production by human
dendritic cells results in the inhibition of T cell proliferation.
J Immunol. 164:3596–3599. 2000.PubMed/NCBI View Article : Google Scholar
|
32
|
Terness P, Bauer TM, Rose L, Dufter C,
Watzlik A, Simon H and Opelz G: Inhibition of allogeneic T cell
proliferation by indoleamine 2,3-dioxygenase-expressing dendritic
cells: Mediation of suppression by tryptophan metabolites. J Exp
Med. 196:447–457. 2002.PubMed/NCBI View Article : Google Scholar
|
33
|
Fallarino F, Gizzi S, Mosci P, Grohmann U
and Puccetti P: Tryptophan catabolism in IDO+ plasmacytoid
dendritic cells. Curr Drug Metab. 8:209–216. 2007.PubMed/NCBI View Article : Google Scholar
|
34
|
Park MJ, Min SY, Park KS, Cho YG, Cho ML,
Jung YO, Park HS, Chang SH, Cho SG, Min JK, et al: Indoleamine
2,3-dioxygenase-expressing dendritic cells are involved in the
generation of CD4+CD25+ regulatory T cells in
Peyer's patches in an orally tolerized, collagen-induced arthritis
mouse model. Arthritis Res Ther. 10(R11)2008.PubMed/NCBI View
Article : Google Scholar
|
35
|
Munn DH, Sharma MD, Lee JR, Jhaver KG,
Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess
R, et al: Potential regulatory function of human dendritic cells
expressing indoleamine 2,3-dioxygenase. Science. 297:1867–1870.
2002.PubMed/NCBI View Article : Google Scholar
|
36
|
Sim WJ, Ahl PJ and Connolly JE: Metabolism
is central to tolerogenic dendritic cell function. Mediators
Inflamm. 2016(2636701)2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Bolandi N, Derakhshani A, Hemmat N,
Baghbanzadeh A, Asadzadeh Z, Nour MA, Brunetti O, Bernardini R,
Silvestris N and Baradaran B: The positive and negative
immunoregulatory role of B7 family: Promising novel targets in
gastric cancer treatment. Int J Mol Sci. 22(10719)2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Castenmiller C, Keumatio-Doungtsop BC, van
Ree R, de Jong EC and van Kooyk Y: Tolerogenic immunotherapy:
Targeting DC surface receptors to induce antigen-specific
tolerance. Front Immunol. 12(643240)2021.PubMed/NCBI View Article : Google Scholar
|
39
|
Ge W, Arp J, Lian D, Liu W, Baroja ML,
Jiang J, Ramcharran S, Eldeen FZ, Zinser E, Steinkasserer A, et al:
Immunosuppression involving soluble CD83 induces tolerogenic
dendritic cells that prevent cardiac allograft rejection.
Transplantation. 90:1145–1156. 2010.PubMed/NCBI View Article : Google Scholar
|
40
|
Frumento G, Rotondo R, Tonetti M, Damonte
G, Benatti U and Ferrara GB: Tryptophan-derived catabolites are
responsible for inhibition of T and natural killer cell
proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med.
196:459–468. 2002.PubMed/NCBI View Article : Google Scholar
|
41
|
Siska PJ, Jiao J, Matos C, Singer K,
Berger RS, Dettmer K, Oefner PJ, Cully MD, Wang Z, Quinn III WJ, et
al: Kynurenine induces T cell fat catabolism and has limited
suppressive effects in vivo. EBioMedicine.
74(103734)2021.PubMed/NCBI View Article : Google Scholar
|
42
|
Dzopalic T, Kostic M, Kostic M, Marjanović
G, Guzina J, Jurišić V and Nedeljković BB: Effects of galectin-1 on
immunomodulatory properties of human monocyte-derived dendritic
cells. Growth Factors. 38:235–246. 2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Takenaka MC and Quintana FJ: Tolerogenic
dendritic cells. Semin Immunopathol. 39:113–120. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Geginat J, Sallusto F and Lanzavecchia A:
Cytokine-driven proliferation and differentiation of human naive,
central memory and effector memory CD4+ T cells. Pathol
Biol (Paris). 51:64–66. 2003.PubMed/NCBI View Article : Google Scholar
|
45
|
Macatonia SE, Hosken NA, Litton M, Vieira
P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM and
O'Garra A: Dendritic cells produce IL-12 and direct the development
of Th1 cells from naive CD4+ T cells. J Immunol.
154:5071–5079. 1995.PubMed/NCBI
|
46
|
Xu H, Jia Y, Li Y, Wei C, Wang W, Guo R,
Jia J, Wu Y, Li Z, Wei Z, et al: IL-10 dampens the Th1 and Tc
activation through modulating DC functions in BCG vaccination.
Mediators Inflamm. 2019(8616154)2019.PubMed/NCBI View Article : Google Scholar
|
47
|
Martinović KM, Vuletić A, Mališić E,
Srdić-Rajić T, Miletić NT, Babović N and Jurišić V: Increased
circulating TGF-β1 is associated with impairment in NK cell
effector functions in metastatic melanoma patients. Growth Factors.
40:231–239. 2022.PubMed/NCBI View Article : Google Scholar
|
48
|
Van der Leek AP, Yanishevsky Y and
Kozyrskyj AL: The kynurenine pathway as a novel link between
allergy and the gut microbiome. Front Immunol.
8(1374)2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Kawasaki H, Chang HW, Tseng HC, Hsu SC,
Yang SJ, Hung CH, Zhou Y and Huang SK: A tryptophan metabolite,
kynurenine, promotes mast cell activation through aryl hydrocarbon
receptor. Allergy. 69:445–452. 2014.PubMed/NCBI View Article : Google Scholar
|
50
|
Mezrich JD, Fechner JH, Zhang X, Johnson
BP, Burlingham WJ and Bradfield CA: An interaction between
kynurenine and the aryl hydrocarbon receptor can generate
regulatory T cells. J Immunol. 185:3190–3198. 2010.PubMed/NCBI View Article : Google Scholar
|