Extracorporeal shock wave treatment for post‑surgical fracture nonunion: Insight into its mechanism, efficacy, safety and prognostic factors (Review)
- Authors:
- Haoyu Wang
- Yaxuan Shi
-
Affiliations: Department of Orthopaedics, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China, Department of Internal Medicine (Bone Oncology), Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China - Published online on: May 19, 2023 https://doi.org/10.3892/etm.2023.12031
- Article Number: 332
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zura R, Watson JT, Einhorn T, Mehta S, Della Rocca GJ, Xiong Z, Wang Z, Jones J and Steen RG: An inception cohort analysis to predict nonunion in tibia and 17 other fracture locations. Injury. 48:1194–1203. 2017.PubMed/NCBI View Article : Google Scholar | |
Tian R, Zheng F, Zhao W, Zhang Y, Yuan J, Zhang B and Li L: Prevalence and influencing factors of nonunion in patients with tibial fracture: Systematic review and meta-analysis. J Orthop Surg Res. 15(377)2020.PubMed/NCBI View Article : Google Scholar | |
Lerner RK, Esterhai JL Jr, Polomano RC, Cheatle MD and Heppenstall RB: Quality of life assessment of patients with posttraumatic fracture nonunion, chronic refractory osteomyelitis, and lower-extremity amputation. Clin Orthop Relat Res. (295) 28-36:1993.PubMed/NCBI | |
Zura R, Braid-Forbes MJ, Jeray K, Mehta S, Einhorn TA, Watson JT, Della Rocca GJ, Forbes K and Steen RG: Bone fracture nonunion rate decreases with increasing age: A prospective inception cohort study. Bone. 95:26–32. 2017.PubMed/NCBI View Article : Google Scholar | |
Yin Y, Xu K, Zhang N, Yi Z, Liu B and Chen S: Clinical and epidemiological features of scaphoid fracture nonunion: A hospital-based study in Beijing, China. Orthop Surg. 14:2455–2461. 2022.PubMed/NCBI View Article : Google Scholar | |
Van Wijck SFM, Van Lieshout EMM, Prins JTH, Verhofstad MHJ, Van Huijstee PJ, Vermeulen J and Wijffels MME: Outcome after surgical stabilization of symptomatic rib fracture nonunion: A multicenter retrospective case series. Eur J Trauma Emerg Surg. 48:2783–2793. 2022.PubMed/NCBI View Article : Google Scholar | |
Ho CH, Tzeng SC, Farn CJ and Lee CC: Teriparatide as an effective nonsurgical treatment for a patient with basicervical peritrochanteric fracture Nonunion-A case report. Medicina (Kaunas). 58(983)2022.PubMed/NCBI View Article : Google Scholar | |
Kumaran A and Soh HL: Management of nonunion and malunion after primary mandibular condylar fracture treatment: A review and recommendations. J Oral Maxillofac Surg. 78:2267–2272. 2020.PubMed/NCBI View Article : Google Scholar | |
Neumann MV, Zwingmann J, Jaeger M, Hammer TO and Sudkamp NP: Non-Union in upper limb fractures-clinical evaluation and treatment options. Acta Chir Orthop Traumatol Cech. 83:223–230. 2016.PubMed/NCBI | |
Rao BM, Stokey P, Tanios M, Liu J and Ebraheim NA: A systematic review of the surgical outcomes of interprosthetic femur fractures. J Orthop. 33:105–111. 2022.PubMed/NCBI View Article : Google Scholar | |
Yang S, Yang Y, Huo Y, Yu J, Sheng L, Sun X, Liu X, Yin J and Yin Z: Effect of the degree of displacement of the third fragment on healing of femoral shaft fracture treated by intramedullary nailing. J Orthop Surg Res. 17(380)2022.PubMed/NCBI View Article : Google Scholar | |
Lari A, Kashif S and AlMukaimi A: Arthroscopic retrograde intramedullary nailing of periprosthetic fractures after total knee arthroplasty-technique, safety, and outcomes. Arthroplast Today. 17:47–52. 2022.PubMed/NCBI View Article : Google Scholar | |
Kwok IHY, Ieong E, Aljalahma MA, Haldar A and Welck M: Extracorporeal shock wave treatment in foot and ankle fracture non-unions-A review. Foot (Edinb). 51(101889)2022.PubMed/NCBI View Article : Google Scholar | |
Cacchio A, Giordano L, Colafarina O, Rompe JD, Tavernese E, Ioppolo F, Flamini S, Spacca G and Santilli V: Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am. 91:2589–2597. 2009.PubMed/NCBI View Article : Google Scholar | |
Willems A, van der Jagt OP and Meuffels DE: Extracorporeal shock wave treatment for delayed union and nonunion fractures: A systematic review. J Orthop Trauma. 33:97–103. 2019.PubMed/NCBI View Article : Google Scholar | |
Wu GB: Effect of extracorporeal shock wave therapy on fracture nonunion and delayed union. Med Equip. 34:99–100. 2021.(In Chinese). | |
Alkhawashki HM: Shock wave therapy of fracture nonunion. Injury. 46:2248–2252. 2015.PubMed/NCBI View Article : Google Scholar | |
Kaulesar Sukul DM, Johannes EJ, Pierik EG, van Eijck GJ and Kristelijn MJ: The effect of high energy shock waves focused on cortical bone: An in vitro study. J Surg Res. 54:46–51. 1993.PubMed/NCBI View Article : Google Scholar | |
Gadomski BC, McGilvray KC, Easley JT, Palmer RH, Jiao J, Li X, Qin YX and Puttlitz CM: An investigation of shock wave therapy and low-intensity pulsed ultrasound on fracture healing under reduced loading conditions in an ovine model. J Orthop Res. 36:921–929. 2018.PubMed/NCBI View Article : Google Scholar | |
Stojadinovic A, Elster EA, Anam K, Tadaki D, Amare M, Zins S and Davis TA: Angiogenic response to extracorporeal shock wave treatment in murine skin isografts. Angiogenesis. 11:369–380. 2008.PubMed/NCBI View Article : Google Scholar | |
Ko NY, Chang CN, Cheng CH, Yu HK and Hu GC: Comparative effectiveness of focused extracorporeal versus radial extracorporeal shockwave therapy for knee osteoarthritis-randomized controlled study. Int J Environ Res Public Health. 19(9001)2022.PubMed/NCBI View Article : Google Scholar | |
Sah V, Kaplan S, Ozkan S, Adanas C and Toprak M: Comparison between radial and focused types of extracorporeal shock-wave therapy in plantar calcaneal spur: A randomized sham-controlled trial. Phys Sportsmed. 51:82–87. 2023.PubMed/NCBI View Article : Google Scholar | |
Saglam G, Cetinkaya Alisar D and Ozen S: Physical therapy versus radial extracorporeal shock wave therapy in the treatment of carpal tunnel syndrome: A randomized-controlled study. Turk J Phys Med Rehabil. 68:126–135. 2022.PubMed/NCBI View Article : Google Scholar | |
Kertzman P, Csaszar NBM, Furia JP and Schmitz C: Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: A retrospective case series. J Orthop Surg Res. 12(164)2017.PubMed/NCBI View Article : Google Scholar | |
Yue L, Chen H, Feng TH, Wang R and Sun HL: Low-intensity extracorporeal shock wave therapy for midshaft clavicular delayed union: A case report and review of literature. World J Clin Cases. 9:8242–8248. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang CJ, Huang KE, Sun YC, Yang YJ, Ko JY, Weng LH and Wang FS: VEGF modulates angiogenesis and osteogenesis in shockwave-promoted fracture healing in rabbits. J Surg Res. 171:114–119. 2011.PubMed/NCBI View Article : Google Scholar | |
Ginini JG, Emodi O, Sabo E, Maor G, Shilo D and Rachmiel A: Effects of timing of extracorporeal shock wave therapy on mandibular distraction osteogenesis: An experimental study in a rat model. J Oral Maxillofac Surg. 77:629–638. 2019.PubMed/NCBI View Article : Google Scholar | |
Lu CC, Chou SH, Shen PC, Chou PH, Ho ML and Tien YC: Extracorporeal shock wave promotes activation of anterior cruciate ligament remnant cells and their paracrine regulation of bone marrow stromal cells' proliferation, migration, collagen synthesis, and differentiation. Bone Joint Res. 9:458–468. 2020.PubMed/NCBI View Article : Google Scholar | |
Li B, Wang R, Huang X, Ou Y, Jia Z, Lin S, Zhang Y, Xia H and Chen B: Extracorporeal shock wave therapy promotes osteogenic differentiation in a rabbit osteoporosis model. Front Endocrinol (Lausanne). 12(627718)2021.PubMed/NCBI View Article : Google Scholar | |
Song WP, Ma XH, Sun YX, Zhang L, Yao Y, Hao XY and Zeng JY: Extracorporeal shock wave therapy (ESWT) may be helpful in the osseointegration of dental implants: A hypothesis. Med Hypotheses. 145(110294)2020.PubMed/NCBI View Article : Google Scholar | |
Kobayashi M, Chijimatsu R, Yoshikawa H and Yoshida K: Extracorporeal shock wave therapy accelerates endochondral ossification and fracture healing in a rat femur delayed-union model. Biochem Biophys Res Commun. 530:632–637. 2020.PubMed/NCBI View Article : Google Scholar | |
Inoue S, Hatakeyama J, Aoki H, Kuroki H, Niikura T, Oe K, Fukui T, Kuroda R, Akisue T and Moriyama H: Utilization of Mechanical stress to treat osteoporosis: The effects of electrical stimulation, radial extracorporeal shock wave, and ultrasound on experimental osteoporosis in ovariectomized rats. Calcif Tissue Int. 109:215–229. 2021.PubMed/NCBI View Article : Google Scholar | |
Hu CC, Chang CH, Hsiao YM, Chang Y, Wu YY, Ueng SWN and Chen MF: Lipoteichoic acid accelerates bone healing by enhancing osteoblast differentiation and inhibiting osteoclast activation in a mouse model of femoral defects. Int J Mol Sci. 21(5550)2020.PubMed/NCBI View Article : Google Scholar | |
Wallimann A, Magrath W, Pugliese B, Stocker N, Westermann P, Heider A, Gehweiler D, Zeiter S, Claesson MJ, Richards RG, et al: Butyrate inhibits osteoclast activity in vitro and regulates systemic inflammation and bone healing in a murine osteotomy model compared to antibiotic-treated mice. Mediators Inflamm. 2021(8817421)2021.PubMed/NCBI View Article : Google Scholar | |
Li X, Wang L, Huang B, Gu Y, Luo Y, Zhi X, Hu Y, Zhang H, Gu Z, Cui J, et al: Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. Sci Adv. 6(eabb7135)2020.PubMed/NCBI View Article : Google Scholar | |
Chen Q, Xia C, Shi B, Chen C, Yang C, Mao G and Shi F: Extracorporeal shock wave combined with teriparatide-loaded hydrogel injection promotes segmental bone defects healing in osteoporosis. Tissue Eng Regen Med. 18:1021–1033. 2021.PubMed/NCBI View Article : Google Scholar | |
Alshihri A, Niu W, Kammerer PW, Al-Askar M, Yamashita A, Kurisawa M and Spector M: The effects of shock wave stimulation of mesenchymal stem cells on proliferation, migration, and differentiation in an injectable gelatin matrix for osteogenic regeneration. J Tissue Eng Regen Med. 14:1630–1640. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Xu J, Huang Z, Yu M, Zhang Y, Chen H, Ma Z, Liao H and Hu J: An innovative approach for enhancing bone defect healing using PLGA scaffolds seeded with extracorporeal-shock-wave-treated bone marrow mesenchymal stem cells (BMSCs). Sci Rep. 7(44130)2017.PubMed/NCBI View Article : Google Scholar | |
Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK and Rabie AB: The role of vascular endothelial growth factor in ossification. Int J Oral Sci. 4:64–68. 2012.PubMed/NCBI View Article : Google Scholar | |
Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, et al: Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 99:9656–9661. 2002.PubMed/NCBI View Article : Google Scholar | |
Sung PH, Yin TC, Chai HT, Chiang JY, Chen CH, Huang CR and Yip HK: Extracorporeal shock wave therapy salvages critical limb ischemia in B6 mice through upregulating cell proliferation signaling and angiogenesis. Biomedicines. 10(117)2022.PubMed/NCBI View Article : Google Scholar | |
Sorg H, Zwetzich I, Tilkorn DJ, Kolbenschlag J, Hauser J, Goertz O, Spindler N, Langer S and Ring A: Effects of extracorporeal shock waves on microcirculation and angiogenesis in the in vivo wound model of the diver box. Eur Surg Res. 62:134–143. 2021.PubMed/NCBI View Article : Google Scholar | |
Modena DAO, Soares CD, Candido EC, Chaim FDM, Cazzo E and Chaim EA: Effect of extracorporeal shock waves on inflammation and angiogenesis of integumentary tissue in obese individuals: Stimulating repair and regeneration. Lasers Med Sci. 37:1289–1297. 2022.PubMed/NCBI View Article : Google Scholar | |
Sternecker K, Geist J, Beggel S, Dietz-Laursonn K, de la Fuente M, Frank HG, Furia JP, Milz S and Schmitz C: Exposure of zebra mussels to extracorporeal shock waves demonstrates formation of new mineralized tissue inside and outside the focus zone. Biol Open. 7(bio033258)2018.PubMed/NCBI View Article : Google Scholar | |
Wu W, Maffulli N, Furia JP, Meindlhumer L, Sternecker K, Milz S and Schmitz C: Exposure of zebra mussels to radial extracorporeal shock waves: Implications for treatment of fracture nonunions. J Orthop Surg Res. 16(707)2021.PubMed/NCBI View Article : Google Scholar | |
Hsu PC, Chang KV, Chiu YH, Wu WT and Ozcakar L: Comparative effectiveness of botulinum toxin injections and extracorporeal shockwave therapy for post-stroke spasticity: A systematic review and network meta-analysis. EClinicalMedicine. 43(101222)2021.PubMed/NCBI View Article : Google Scholar | |
Hsiao MY, Hung CY, Chang KV, Chien KL, Tu YK and Wang TG: Comparative effectiveness of autologous blood-derived products, shock-wave therapy and corticosteroids for treatment of plantar fasciitis: A network meta-analysis. Rheumatology (Oxford). 54:1735–1743. 2015.PubMed/NCBI View Article : Google Scholar | |
Chang KV, Chen SY, Chen WS, Tu YK and Chien KL: Comparative effectiveness of focused shock wave therapy of different intensity levels and radial shock wave therapy for treating plantar fasciitis: A systematic review and network meta-analysis. Arch Phys Med Rehabil. 93:1259–1268. 2012.PubMed/NCBI View Article : Google Scholar | |
Gao J, Rubin JM, Chen J and O'Dell M: Ultrasound elastography to assess botulinum toxin a treatment for post-stroke spasticity: A feasibility study. Ultrasound Med Biol. 45:1094–1102. 2019.PubMed/NCBI View Article : Google Scholar | |
Venkatakrishnan A, Francisco GE and Contreras-Vidal JL: Applications of brain-machine interface systems in stroke recovery and rehabilitation. Curr Phys Med Rehabil Rep. 2:93–105. 2014.PubMed/NCBI View Article : Google Scholar | |
Rompe JD, Rosendahl T, Schollner C and Theis C: High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res. (387) 102-111:2001.PubMed/NCBI View Article : Google Scholar | |
Elster EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC and Schaden W: Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma. 24:133–141. 2010.PubMed/NCBI View Article : Google Scholar | |
Zhang LH, Man LB, Huang GL and Xu X: Effect of different dosage of radial extracorporeal shock waves on fracture disunite and bone nonunions. Chinese Journal of Rehabilitation Theory and Practice. 19:978–980. 2013.(In Chinese). | |
Huang XW, Han W, Liu YJ, Zhang LH, Gong MQ and Jiang XY: Comparison of the treatment results of hypertrophic nonunion by using extracorporeal shock wave therapy(ESWT) or traditional iliac autograft and internal fixation. J Nanjing Med Univ (Natural Sciences). 35:1432–1436. 2015.(In Chinese). | |
Wang WZ, Xing GY and Zhai L: Clinical study of extracorporeal shock wave therapy with autograf t of bone marrow for bone nonunion. Chin J Prim Med Pharm. 13:1057–1059. 2006.(In Chinese). | |
Jin X, Tan YH, Zhang ZY, Ju CJ, Yan W and Jiang HJ: A clinical study of injection of autologous cell growth factors combined with extracorporeal shock wave therapy for treatment of nonunion of lower limb fractures. J Trad Chin Orthop Trauma. 30:10–13. 2018.(In Chinese). | |
Gvozdenovic R, Presman B, Larsen MB, Radev DI, Joerring S and Jensen CH: Can CT-scan measurements of humpback deformity, dislocation, and the size of bony cysts predict union after surgery for scaphoid nonunion? J Wrist Surg. 10:418–429. 2021.PubMed/NCBI View Article : Google Scholar | |
Doll J, Waizenegger S, Schmidmaier G, Weber MA and Fischer C: Contrast-Enhanced Ultrasound: A viable diagnostic tool in predicting treatment failure after non-union revision surgery for Upper- and Lower-limb Non-unions. Ultrasound Med Biol. 47:3147–3158. 2021.PubMed/NCBI View Article : Google Scholar | |
Konda SR, Carlock KD, Hildebrandt KR and Egol KA: Predicting functional outcomes following fracture nonunion repair-development and validation of a risk profiling tool. J Orthop Trauma. 34:e214–e220. 2020.PubMed/NCBI View Article : Google Scholar | |
Yin J, Zhu H, Gao Y and Zhang C: Vascularized fibular grafting in treatment of femoral neck nonunion: A prognostic study based on long-term outcomes. J Bone Joint Surg Am. 101:1294–1300. 2019.PubMed/NCBI View Article : Google Scholar | |
Christiano AV, Goch AM, Leucht P, Konda SR and Egol KA: Radiographic union score for tibia fractures predicts success with operative treatment of tibial nonunion. J Clin Orthop Trauma. 10:650–654. 2019.PubMed/NCBI View Article : Google Scholar | |
Stojadinovic A, Kyle Potter B, Eberhardt J, Shawen SB, Andersen RC, Forsberg JA, Shwery C, Ester EA and Schaden W: Development of a prognostic naive bayesian classifier for successful treatment of nonunions. J Bone Joint Surg Am. 93:187–194. 2011.PubMed/NCBI View Article : Google Scholar | |
Chen S, Chen X, Geng Z and Su J: The horizon of bone organoid: A perspective on construction and application. Bioact Mater. 18:15–25. 2022.PubMed/NCBI View Article : Google Scholar | |
Xue X, Hu Y, Wang S, Chen X, Jiang Y and Su J: Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 12:327–339. 2021.PubMed/NCBI View Article : Google Scholar | |
Sun C, Kang J, Yang C, Zheng J, Su Y, Dong E, Liu Y, Yao S, Shi C, Pang H, et al: Additive manufactured polyether-ether-ketone implants for orthopaedic applications: A narrative review. Biomater Transl. 3:116–133. 2022.PubMed/NCBI View Article : Google Scholar | |
Li H, Yang P, Hwang J, Pageni P, Decho AW and Tang C: Antifouling and antimicrobial cobaltocenium-containing metallopolymer double-network hydrogels. Biomater Transl. 3:162–171. 2022.PubMed/NCBI View Article : Google Scholar |