1
|
Catanzaro M, Fagiani F, Racchi M, Corsini
E, Govoni S and Lanni C: Immune response in COVID-19: Addressing a
pharmacological challenge by targeting pathways triggered by
SARS-CoV-2. Signal Transduct Target Ther. 5(84)2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Yuan Y, Jiao B, Qu L, Yang D and Liu R:
The development of COVID-19 treatment. Front Immunol.
14(1125246)2023.PubMed/NCBI View Article : Google Scholar
|
3
|
Pfortmueller CA, Spinetti T, Urman RD,
Luedi MM and Schefold JC: COVID-19-associated acute respiratory
distress syndrome (CARDS): Current knowledge on pathophysiology and
ICU treatment-A narrative review. Best Pract Res Clin Anaesthesiol.
35:351–368. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Crayne CB, Albeituni S, Nichols KE and
Cron RQ: The immunology of macrophage activation syndrome. Front
Immunol. 10(119)2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Kindler E, Thiel V and Weber F:
Interaction of SARS and MERS coronaviruses with the antiviral
interferon response. Adv Virus Res. 96:219–243. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Min CK, Cheon S, Ha NY, Sohn KM, Kim Y,
Aigerim A, Shin HM, Choi JY, Inn KS, Kim JH, et al: Comparative and
kinetic analysis of viral shedding and immunological responses in
MERS patients representing a broad spectrum of disease severity.
Sci Rep. 6(25359)2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Channappanavar R and Perlman S: Pathogenic
human coronavirus infections: Causes and consequences of cytokine
storm and immunopathology. Semin Immunopathol. 39:529–539.
2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Liang Y, Wang ML, Chien CS, Yarmishyn AA,
Yang YP, Lai WY, Luo YH, Lin YT, Chen YJ, Chang PC and Chiou SH:
Highlight of immune pathogenic response and hematopathologic effect
in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection. Front Immunol.
11(1022)2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Yao Z, Zheng Z, Wu K and Junhua Z: Immune
environment modulation in pneumonia patients caused by coronavirus:
SARS-CoV, MERS-CoV and SARS-CoV-2. Aging (Albany NY). 12:7639–7651.
2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Mehta P, McAuley DF, Brown M, Sanchez E,
Tattersall RS and Manson JJ: HLH Across Speciality Collaboration,
UK. COVID-19: Consider cytokine storm syndromes and
immunosuppression. Lancet. 395:1033–1034. 2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Al-Samkari H and Berliner N:
Hemophagocytic lymphohistiocytosis. Annu Rev Pathol. 13:27–49.
2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Li X, Geng M, Peng Y, Meng L and Lu S:
Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm
Anal. 10:102–108. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Sarzi-Puttini P, Giorgi V, Sirotti S,
Marotto D, Ardizzone S, Rizzardini G, Antinori S and Galli M:
COVID-19, cytokines and immunosuppression: What can we learn from
severe acute respiratory syndrome? Clin Exp Rheumatol. 38:337–342.
2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Chung MM, Nicol CJ, Cheng YC, Lin KH, Chen
YL, Pei D, Lin CH, Shih YN, Yen CH, Chen SJ, et al: Metformin
activation of AMPK suppresses AGE-induced inflammatory response in
hNSCs. Exp Cell Res. 352:75–83. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Yin Y, Choi SC, Xu Z, Perry DJ, Seay H,
Croker BP, Sobel ES, Brusko TM and Morel L: Normalization of CD4+ T
cell metabolism reverses lupus. Sci Transl Med.
7(274ra18)2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Lee SY, Moon SJ, Kim EK, Seo HB, Yang EJ,
Son HJ, Kim JK, Min JK, Park SH and Cho ML: Metformin suppresses
systemic autoimmunity in roquin san/san mice through
inhibiting B cell differentiation into plasma cells via regulation
of AMPK/mTOR/STAT3. J Immunol. 198:2661–2670. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Jing Y, Wu F, Li D, Yang L, Li Q and Li R:
Metformin improves obesity-associated inflammation by altering
macrophages polarization. Mol Cell Endocrinol. 461:256–264.
2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Kim EK, Lee SH, Lee SY, Kim JK, Jhun JY,
Na HS, Kim SY, Choi JY, Yang CW, Park SH and Cho ML: Metformin
ameliorates experimental-obesity-associated autoimmune arthritis by
inducing FGF21 expression and brown adipocyte differentiation. Exp
Mol Med. 50(e432)2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Schuiveling M, Vazirpanah N, Radstake
TRDJ, Zimmermann M and Broen JCA: Metformin, a new era for an old
drug in the treatment of immune mediated disease? Curr Drug
Targets. 19:945–959. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Ba W, Xu Y, Yin G, Yang J, Wang R, Chi S,
Wang Y and Li C: Metformin inhibits pro-inflammatory responses via
targeting nuclear factor-κB in HaCaT cells. Cell Biochem Funct.
37:4–10. 2019.PubMed/NCBI View
Article : Google Scholar
|
22
|
Jang SG, Lee J, Hong SM, Kwok SK, Cho ML
and Park SH: Metformin enhances the immunomodulatory potential of
adipose-derived mesenchymal stem cells through STAT1 in an animal
model of lupus. Rheumatology (Oxford). 59:1426–1438.
2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Sciannimanico S, Grimaldi F, Vescini F, De
Pergola G, Iacoviello M, Licchelli B, Guastamacchia E, Giagulli VA
and Triggiani V: Metformin: Up to date. Endocr Metab Immune Disord
Drug Targets. 20:172–181. 2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Saisho Y: Metformin and inflammation: Its
potential beyond glucose lowering effect. Endocr Metab Immune
Disord Drug Targets. 15:196–205. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Ismaiel AA, Espinosa-Oliva AM, Santiago M,
García-Quintanilla A, Oliva-Martín MJ, Herrera AJ, Venero JL and de
Pablos RM: Metformin, besides exhibiting strong in vivo
anti-inflammatory properties, increases mptp-induced damage to the
nigrostriatal dopaminergic system. Toxicol Apple Pharmacol.
298:19–30. 2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Koh SJ, Kim JM, Kim IK, Ko SH and Kim JS:
Anti-inflammatory mechanism of metformin and its effects in
intestinal inflammation and colitis-associated colon cancer. J
Gastroenterol Hepatol. 29:502–510. 2014.PubMed/NCBI View Article : Google Scholar
|
27
|
Cho JG, Song JJ, Choi J, Im GJ, Jung HH
and Chae SW: The suppressive effects of metformin on inflammatory
response of otitis media model in human middle ear epithelial
cells. Int J Pediatr Otorhinolaryngol. 89:28–32. 2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Park CS, Bang BR, Kwon HS, Moon KA, Kim
TB, Lee KY, Moon HB and Cho YS: Metformin reduces airway
inflammation and remodeling via activation of AMP-activated protein
kinase. Biochem Pharmacol. 84:1660–1670. 2012.PubMed/NCBI View Article : Google Scholar
|
29
|
Tang G, Yang H, Chen J, Shi M, Ge L, Ge X
and Zhu G: Metformin ameliorates sepsis-induced brain injury by
inhibiting apoptosis, oxidative stress and neuroinflammation via
the PI3K/Akt signaling pathway. Oncotarget. 8:97977–97989.
2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Kim J, Kwak HJ, Cha JY, Jeong YS, Rhee SD,
Kim KR and Cheon HG: Metformin suppresses lipopolysaccharide
(LPS)-induced inflammatory response in murine macrophages via
activating transcription factor-3 (ATF-3) induction. J Biol Chem.
289:23246–23255. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Montazersaheb S, Hosseiniyan Khatibi SM,
Hejazi MS, Tarhriz V, Farjami A, Ghasemian Sorbeni F, Farahzadi R
and Ghasemnejad T: COVID-19 infection: An overview on cytokine
storm and related interventions. Virol J. 19(92)2022.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhao X, Cao F, Liu Q, Li X, Xu G, Liu G,
Zhang Y, Yang X, Yi S, Xu F, et al: Behavioral, inflammatory and
neurochemical disturbances in LPS and UCMS-induced mouse models of
depression. Behav Brain Res. 364:494–502. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Kelly B, Tannahill GM, Murphy MP and
O'Neill LA: Metformin inhibits the production of reactive oxygen
species from NADH: Ubiquinone oxidoreductase to limit induction of
interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in
lipopolysaccharide (LPS)-activated macrophages. J Biol Chem.
290:20348–20359. 2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Dehkordi EH, Sattari F, Khoshdel A and
Kasiri K: Effect of folic acid and metformin on insulin resistance
and inflammatory factors of obese children and adolescents. J Res
Med Sci. 21(71)2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Dias SSG, Soares VC, Ferreira AC,
Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, Teixeira L,
Nunes da Silva MA, Barreto E, Mattos M, et al: Lipid droplets fuel
SARS-CoV-2 replication and production of inflammatory mediators.
PLoS Pathog. 16(e1009127)2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Chao L, Hui-Jie G, Fang Y, Ni K, Bao-Kub W
and Teng-yuan Z: Anti-inflammatory effect of metformin LPS-induced
inflammation in mice. Basic Clin Med.
39(1001-6325-1248-04)2019.
|
37
|
Cavalli G, Larcher A, Tomelleri A,
Campochiaro C, Della-Torre E, De Luca G, Farina N, Boffini N,
Ruggeri A, Poli A, et al: Interleukin-1 and interleukin-6
inhibition compared with standard management in patients with
COVID19 and hyperinfammation: A cohort study. Lancet Rheumatol.
3:E253–E261. 2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Hyun B, Shin S, Lee A, Lee S, Song Y, Ha
NJ, Cho KH and Kim K: Metformin Down-regulates TNF-α secretion via
suppression of scavenger receptors in macrophages. Immune Netw.
13:123–132. 2013.PubMed/NCBI View Article : Google Scholar
|
39
|
Postler TS, Peng V, Bhatt DM and Ghosh S:
Metformin selectively dampens the acute inflammatory response
through an AMPK-dependent mechanism. Sci Rep.
11(18721)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Sun J, Zhang S, Zhang X, Zhang X, Dong H
and Qian Y: IL-17A is implicated in lipopolysaccharide-induced
neuroinflammation and cognitive impairment in aged rats via
microglial activation. J Neuroinflammation. 12(165)2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Furuya S, Kono H, Hara M, Hirayama K, Sun
C and Fujii H: Interleukin 17A plays a role in
lipopolysaccharide/D-galactosamine-induced fulminant hepatic injury
in mice. J surg Res. 199:487–493. 2015.PubMed/NCBI View Article : Google Scholar
|
42
|
Moon J, Lee SY, Choi JW, Lee AR, Yoo JH,
Moon SJ, Park SH and Cho ML: Metformin ameliorates scleroderma via
inhibiting Th17 cells and reducing mTOR-STAT3 signaling in skin
fibroblasts. J Transl Med. 19(192)2021.PubMed/NCBI View Article : Google Scholar
|
43
|
Li Q, Gu Y, Tu Q, Wang K, Gu X and Ren T:
Blockade of Interleukin-17 restrains the development of acute lung
injury. Scand J Immunol. 83:203–211. 2016.PubMed/NCBI View Article : Google Scholar
|
44
|
Carvalho FA, Aitken JD, Vijay-Kumar M and
Gewirtz AT: Toll-like receptor-gut microbiota interactions: Perturb
at your own risk! Annu Rev. Physiol. 74:177–198. 2012.PubMed/NCBI View Article : Google Scholar
|
45
|
Rodriguez J, Hiel S and Delzenne NM:
Metformin: Old friend, new ways of action-implication of the gut
microbiome? Curr Opin Clin Nutr Metab Care. 21:294–301.
2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Lee YK, Menezes JS, Umesaki Y and
Mazmanian SK: Proinflammatory T-cell responses to gut microbiota
promote experimental autoimmune encephalomyelitis. Proc Natl Acad
Sci USA. 108 (Suppl 1):S4615–S4622. 2011.PubMed/NCBI View Article : Google Scholar
|
47
|
Lukens JR, Gurung P, Vogel P, Johnson GR,
Carter RA, McGoldrick DJ, Bandi SR, Calabrese CR, Vande Walle L,
Lamkanfi M and Kanneganti TD: Dietary modulation of the microbiome
affects autoinflammatory disease. Nature. 516:246–249.
2014.PubMed/NCBI View Article : Google Scholar
|
48
|
Elbere I, Kalnina I, Silamikelis I,
Konrade I, Zaharenko L, Sekace K, Radovica-Spalvina I, Fridmanis D,
Gudra D, Pirags V and Klovins J: Association of metformin
administration with gut microbiome dysbiosis in healthy volunteers.
PLoS One. 13(e0204317)2018.PubMed/NCBI View Article : Google Scholar
|
49
|
Zhang W, Xu JH, Yu T and Chen QK: Effects
of berberine and metformin on intestinal inflammation and gut
microbiome composition in db/db mice. Biomed Pharmacother.
118(109131)2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Zhang Q and Hu N: Effects of metformin on
the gut microbiota in obesity and type 2 diabetes mellitus.
Diabetes Metab Cinder Obes. 13:5003–5014. 2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Liu Z, Liao W, Zhang Z, Sun R, Luo Y, Chen
Q, L X, Lu R and Ying Y: Metformin affects gut microbiota
composition and diversity associated with amelioration of dextran
sulfate sodium-induced colitis in mice. Front Pharmacol.
12(640347)2021.PubMed/NCBI View Article : Google Scholar
|
52
|
Adeshirlarijaney A, Zou J, Tran HQ,
Chassaing B and Gewirtz AT: Amelioration of metabolic syndrome by
metformin associates with reduced indices of low-grade inflammation
independently of the gut microbiota. Am J Physiol Endocrinol Metab.
317:E1121–E1130. 2019.PubMed/NCBI View Article : Google Scholar
|
53
|
Petrakis D, Margină D, Tsarouhas K, Tekos
F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A:
Obesity a risk factor for increased COVID19 prevalence, severity
and lethality (Review). Mol Med Rep. 22:9–19. 2020.PubMed/NCBI View Article : Google Scholar
|