Molecular consideration relevant to the mechanism of the comorbidity between psoriasis and systemic lupus erythematosus (Review)
- This article is part of the special Issue: Immuno-Dermatology
- Authors:
- Yuying Qu
- Dongmei Li
- Weida Liu
- Dongmei Shi
-
Affiliations: Department of Dermatology, College of Clinical Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China, Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA, Department of Medical Mycology, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, Jiangsu 272002, P.R. China, Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China - Published online on: August 29, 2023 https://doi.org/10.3892/etm.2023.12181
- Article Number: 482
-
Copyright: © Qu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
AlQassimi S, AlBrashdi S, Galadari H and Hashim MJ: Global burden of psoriasis-comparison of regional and global epidemiology, 1990 to 2017. Int J Dermatol. 59:566–571. 2020.PubMed/NCBI View Article : Google Scholar | |
Gómez-Bañuelos E, Fava A and Andrade F: An update on autoantibodies in systemic lupus erythematosus. Curr Opin Rheumatol. 35:61–67. 2023.PubMed/NCBI View Article : Google Scholar | |
Karrar S and Cunninghame Graham DS: Abnormal B cell development in systemic lupus erythematosus: What the genetics tell us. Arthritis Rheumatol. 70:496–507. 2018.PubMed/NCBI View Article : Google Scholar | |
Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC, Gonzalez J, Krueger JG and Lowes MA: Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol. 129:79–88. 2009.PubMed/NCBI View Article : Google Scholar | |
Kagami S, Rizzo HL, Lee JJ, Koguchi Y and Blauvelt A: Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 130:1373–1383. 2010.PubMed/NCBI View Article : Google Scholar | |
Funauchi M, Ikoma S, Enomoto H and Horiuchi A: Decreased Th1-like and increased Th2-like cells in systemic lupus erythematosus. Scand J Rheumatol. 27:219–224. 1998.PubMed/NCBI View Article : Google Scholar | |
Richaud-Patin Y, Alcocer-Varela J and Llorente L: High levels of TH2 cytokine gene expression in systemic lupus erythematosus. Rev Invest Clin. 47:267–272. 1995.PubMed/NCBI | |
Redisch W, Messina EJ, Hughes G and McEwen C: Capillaroscopic observations in rheumatic diseases. Ann Rheum Dis. 29:244–253. 1970.PubMed/NCBI View Article : Google Scholar | |
Tselios K, Yap KS, Pakchotanon R, Polachek A, Su J, Urowitz MB and Gladman DD: Psoriasis in systemic lupus erythematosus: A single-center experience. Clin Rheumatol. 36:879–884. 2017.PubMed/NCBI View Article : Google Scholar | |
Shindo E, Shikano K, Kawazoe M, Yamamoto T, Kusunoki N, Hashimoto Y and Nanki T: A case of generalized pustular psoriasis caused by hydroxychloroquine in a patient with systemic lupus erythematosus. Lupus. 28:1017–1020. 2019.PubMed/NCBI View Article : Google Scholar | |
Akaji K, Nakagawa Y, Kakuda K, Takafuji M, Kiyohara E, Murase C, Takeichi T, Akiyama M and Fujimoto M: Generalized pustular psoriasis associated with systemic lupus erythematosus successfully treated with secukinumab. J Dermatol. 48:e43–e44. 2021.PubMed/NCBI View Article : Google Scholar | |
Varada S, Gottlieb AB, Merola JF, Saraiya AR and Tintle SJ: Treatment of coexistent psoriasis and lupus erythematosus. J Am Acad Dermatol. 72:253–260. 2015.PubMed/NCBI View Article : Google Scholar | |
Millns JL and Muller SA: The coexistence of psoriasis and lupus erythematosus. An analysis of 27 cases. Arch Dermatol. 116:658–663. 1980.PubMed/NCBI | |
Wang Y, Da G, Yu Y, Han J and Li H: Coincident systemic lupus erythematosus and psoriasis vulgaris: A case report. G Ital Dermatol Venereol. 150:749–751. 2015.PubMed/NCBI | |
Gaber W, Sayed S, Rady HM and Mohey AM: Interleukin-27 and its relation to disease parameters in SLE patient. Egypt Rheumatol. 34:99–105. 2012. | |
Fu SM, Dai C, Zhao Z and Gaskin F: Anti-dsDNA Antibodies are one of the many autoantibodies in systemic lupus erythematosus. F1000Res. 4(939)2015.PubMed/NCBI View Article : Google Scholar | |
Pisetsky DS: Anti-DNA antibodies-quintessential biomarkers of SLE. Nat Rev Rheumatol. 12:102–110. 2016.PubMed/NCBI View Article : Google Scholar | |
Trouw LA, Pickering MC and Blom AM: The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol. 13:538–547. 2017.PubMed/NCBI View Article : Google Scholar | |
Qi S, Chen Q, Xu D, Xie N and Dai Y: Clinical application of protein biomarkers in lupus erythematosus and lupus nephritis. Lupus. 27:1582–1590. 2018.PubMed/NCBI View Article : Google Scholar | |
Weber B, Merola JF, Husni ME, Di Carli M, Berger JS and Garshick MS: Psoriasis and cardiovascular disease: Novel mechanisms and evolving therapeutics. Curr Atheroscler Rep. 23(67)2021.PubMed/NCBI View Article : Google Scholar | |
Bu J, Ding R, Zhou L, Chen X and Shen E: Epidemiology of Psoriasis and comorbid diseases: A narrative review. Front Immunol. 13(880201)2022.PubMed/NCBI View Article : Google Scholar | |
Yamazaki F: Psoriasis: Comorbidities. J Dermatol. 48:732–740. 2021.PubMed/NCBI View Article : Google Scholar | |
Davidson A and Diamond B: Autoimmune diseases. N Engl J Med. 345:340–350. 2001.PubMed/NCBI View Article : Google Scholar | |
Kommoss KS, Enk A, Heikenwälder M, Waisman A, Karbach S and Wild J: Cardiovascular comorbidity in psoriasis-psoriatic inflammation is more than just skin deep. J Dtsch Dermatol Ges. 21:718–725. 2023.PubMed/NCBI View Article : Google Scholar | |
Christophers E: Comorbidities in psoriasis. Clin Dermatol. 25:529–534. 2007.PubMed/NCBI View Article : Google Scholar | |
Davidovici BB, Sattar N, Prinz J, Puig L, Emery P, Barker JN, van de Kerkhof P, Ståhle M, Nestle FO, Girolomoni G and Krueger JG: Psoriasis and systemic inflammatory diseases: Potential mechanistic links between skin disease and co-morbid conditions. J Invest Dermatol. 130:1785–1796. 2010.PubMed/NCBI View Article : Google Scholar | |
Wu JJ, Nguyen TU, Poon KY and Herrinton LJ: The association of psoriasis with autoimmune diseases. J Am Acad Dermatol. 67:924–930. 2012.PubMed/NCBI View Article : Google Scholar | |
Edson-Heredia E, Zhu B, Lefevre C, Wang M, Barrett A, Bushe CJ, Cox A, Wu JJ and Maeda-Chubachi T: Prevalence and incidence rates of cardiovascular, autoimmune, and other diseases in patients with psoriatic or psoriatic arthritis: A retrospective study using clinical practice research datalink. J Eur Acad Dermatol Venereol. 29:955–963. 2015.PubMed/NCBI View Article : Google Scholar | |
Sticherling M: Psoriasis and autoimmunity. Autoimmun Rev. 15:1167–1170. 2016.PubMed/NCBI View Article : Google Scholar | |
Prinz JC: Melanocytes: Target cells of an HLA-C*06:02-Restricted autoimmune response in psoriasis. J Invest Dermatol. 137:2053–2058. 2017.PubMed/NCBI View Article : Google Scholar | |
Furue K, Ito T, Tsuji G, Kadono T, Nakahara T and Furue M: Autoimmunity and autoimmune co-morbidities in psoriasis. Immunology. 154:21–27. 2018.PubMed/NCBI View Article : Google Scholar | |
Prinz JC: Human leukocyte antigen-class I alleles and the autoreactive T cell response in psoriasis pathogenesis. Front Immunol. 9(954)2018.PubMed/NCBI View Article : Google Scholar | |
Andersen YMF, Wu JJ, Thyssen JP and Egeberg A: Chronologic order of appearance of immune-mediated inflammatory diseases relative to diagnosis of psoriasis. J Am Acad Dermatol. 81:1283–1291. 2019.PubMed/NCBI View Article : Google Scholar | |
Korkus D, Gazitt T, Cohen AD, Feldhamer I, Lavi I, Haddad A, Greenberg-Dotan S, Batat E and Zisman D: Increased prevalence of systemic lupus erythematosus comorbidity in patients with psoriatic arthritis: A population-based case-control study. J Rheumatol. 48:207–213. 2021.PubMed/NCBI View Article : Google Scholar | |
Kaslow RA: High rate of death caused by systemic lupus erythematosus among U.S. residents of Asian descent. Arthritis Rheum. 25:414–418. 1982.PubMed/NCBI View Article : Google Scholar | |
Tsai TF, Wang TS, Hung ST, Tsai PI, Schenkel B, Zhang M and Tang CH: Epidemiology and comorbidities of psoriasis patients in a national database in Taiwan. J Dermatol Sci. 63:40–46. 2011.PubMed/NCBI View Article : Google Scholar | |
Mohan AK, Edwards ET, Coté TR, Siegel JN and Braun MM: Drug-induced systemic lupus erythematosus and TNF-alpha blockers. Lancet. 360(646)2002.PubMed/NCBI View Article : Google Scholar | |
Debandt M, Vittecoq O, Descamps V, Le Loët X and Meyer O: Anti-TNF-alpha-induced systemic lupus syndrome. Clin Rheumatol. 22:56–61. 2003.PubMed/NCBI View Article : Google Scholar | |
Zalla MJ and Muller SA: The coexistence of psoriasis with lupus erythematosus and other photosensitive disorders. Acta Derm Venereol Suppl (Stockh). 195:1–15. 1996.PubMed/NCBI | |
Ojemolon PE, Unadike CE and Uwumiro F: Psoriasis is associated with an increased risk of hospitalization for systemic lupus erythematosus: Analysis of the national inpatient sample database. Cureus. 12(e11771)2020.PubMed/NCBI View Article : Google Scholar | |
Astudillo L, Sailler L, Carreiro M, Dahan S, Ollier S and Arlet P: Psoriasis and systemic lupus erythematosus: A rare association with specific therapeutic problems. Ann Med Interne (Paris). 154:3–6. 2003.PubMed/NCBI(In French). | |
Wang WM, Wang KY, Wang T, Jin HZ and Fang K: Hydroxychloroquine-induced psoriasis-form erythroderma in a patient with systemic lupus erythematosus. Chin Med J (Engl). 131:1887–1888. 2018.PubMed/NCBI View Article : Google Scholar | |
Sharabi A and Tsokos GC: T cell metabolism: New insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol. 16:100–112. 2020.PubMed/NCBI View Article : Google Scholar | |
Brembilla NC and Boehncke WH: Revisiting the interleukin 17 family of cytokines in psoriasis: Pathogenesis and potential targets for innovative therapies. Front Immunol. 14(1186455)2023.PubMed/NCBI View Article : Google Scholar | |
Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, et al: Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449:564–569. 2007.PubMed/NCBI View Article : Google Scholar | |
Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu YJ and Gilliet M: Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 202:135–143. 2005.PubMed/NCBI View Article : Google Scholar | |
Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, et al: Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 3(73ra19)2011.PubMed/NCBI View Article : Google Scholar | |
Yoshiki R, Kabashima K, Honda T, Nakamizo S, Sawada Y, Sugita K, Yoshioka H, Ohmori S, Malissen B, Tokura Y and Nakamura M: IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J Invest Dermatol. 134:1912–1921. 2014.PubMed/NCBI View Article : Google Scholar | |
Vincent FB, Morand EF, Schneider P and Mackay F: The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 10:365–373. 2014.PubMed/NCBI View Article : Google Scholar | |
Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X, Tomar D, Woodruff MC, Simon Z, Bugrovsky R, et al: Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 49:725–739.e6. 2018.PubMed/NCBI View Article : Google Scholar | |
Jenks SA, Cashman KS, Woodruff MC, Lee FE and Sanz I: Extrafollicular responses in humans and SLE. Immunol Rev. 288:136–148. 2019.PubMed/NCBI View Article : Google Scholar | |
Hale M, Rawlings DJ and Jackson SW: The long and the short of it: Insights into the cellular source of autoantibodies as revealed by B cell depletion therapy. Curr Opin Immunol. 55:81–88. 2018.PubMed/NCBI View Article : Google Scholar | |
Maddur MS, Miossec P, Kaveri SV and Bayry J: Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 181:8–18. 2012.PubMed/NCBI View Article : Google Scholar | |
Korn T, Bettelli E, Oukka M and Kuchroo VK: IL-17 and Th17 cells. Annu Rev Immunol. 27:485–517. 2009.PubMed/NCBI View Article : Google Scholar | |
Miossec P, Korn T and Kuchroo VK: Interleukin-17 and type 17 helper T cells. N Engl J Med. 361:888–898. 2009.PubMed/NCBI View Article : Google Scholar | |
Meitei HT, Jadhav N and Lal G: CCR6-CCL20 axis as a therapeutic target for autoimmune diseases. Autoimmun Rev. 20(102846)2021.PubMed/NCBI View Article : Google Scholar | |
Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J and Ouyang W: Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 445:648–651. 2007.PubMed/NCBI View Article : Google Scholar | |
Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA and Krueger JG: Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 204:3183–3194. 2007.PubMed/NCBI View Article : Google Scholar | |
Lee AYS and Körner H: The CCR6-CCL20 axis in humoral immunity and T-B cell immunobiology. Immunobiology. 224:449–454. 2019.PubMed/NCBI View Article : Google Scholar | |
Li D, Guo B, Wu H, Tan L, Chang C and Lu Q: Interleukin-17 in systemic lupus erythematosus: A comprehensive review. Autoimmunity. 48:353–361. 2015.PubMed/NCBI View Article : Google Scholar | |
Yang J, Yang X, Zou H and Li M: Oxidative stress and Treg and Th17 dysfunction in systemic lupus erythematosus. Oxid Med Cell Longev. 2016(2526174)2016.PubMed/NCBI View Article : Google Scholar | |
Wong CK, Ho CY, Li EK and Lam CW: Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus. 9:589–593. 2000.PubMed/NCBI View Article : Google Scholar | |
Reihani H, Rastin M, Mahmoudi M, Ghoryani M, Abdollahi N, Tabasi NS, Zamani Taghizadeh Rabe S and Sahebari M: Influence of 1 alpha, 25-dihydroxyvitamin D3 on T helper 17 cells and related cytokines in systemic lupus erythematosus. Iran J Immunol. 12:82–93. 2015.PubMed/NCBI | |
Liu T, Li S, Ying S, Tang S, Ding Y, Li Y, Qiao J and Fang H: The IL-23/IL-17 pathway in inflammatory skin diseases: From bench to bedside. Front Immunol. 11(594735)2020.PubMed/NCBI View Article : Google Scholar | |
Mok MY, Wu HJ, Lo Y and Lau CS: The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J Rheumatol. 37:2046–2052. 2010.PubMed/NCBI View Article : Google Scholar | |
Dong G, Ye R, Shi W, Liu S, Wang T, Yang X, Yang N and Yu X: IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chin Med J (Engl). 116:543–548. 2003.PubMed/NCBI | |
Bălănescu P, Bălănescu E, Tănăsescu C, Nicolau A, Tănăsescu R, Grancea C, Vagu C, Ruţă S and Bleoţu C: T helper 17 cell population in lupus erythematosus. Rom J Intern Med. 48:255–259. 2010.PubMed/NCBI | |
Dolff S, Quandt D, Wilde B, Feldkamp T, Hua F, Cai X, Specker C, Kribben A, Kallenberg CG and Witzke O: Increased expression of costimulatory markers CD134 and CD80 on interleukin-17 producing T cells in patients with systemic lupus erythematosus. Arthritis Res Ther. 12(R150)2010.PubMed/NCBI View Article : Google Scholar | |
Ballantine LE, Ong J, Midgley A, Watson L, Flanagan BF and Beresford MW: The pro-inflammatory potential of T cells in juvenile-onset systemic lupus erythematosus. Pediatr Rheumatol Online J. 12(4)2014.PubMed/NCBI View Article : Google Scholar | |
Tanasescu C, Balanescu E, Balanescu P, Olteanu R, Badea C, Grancea C, Vagu C, Bleotu C, Ardeleanu C and Georgescu A: IL-17 in cutaneous lupus erythematosus. Eur J Intern Med. 21:202–207. 2010.PubMed/NCBI View Article : Google Scholar | |
Apostolidis SA, Crispín JC and Tsokos GC: IL-17-producing T cells in lupus nephritis. Lupus. 20:120–124. 2011.PubMed/NCBI View Article : Google Scholar | |
Albanesi C, Cavani A and Girolomoni G: IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: Synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol. 162:494–502. 1999.PubMed/NCBI | |
Schwarzenberger P, Huang W, Ye P, Oliver P, Manuel M, Zhang Z, Bagby G, Nelson S and Kolls JK: Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J Immunol. 164:4783–4789. 2000.PubMed/NCBI View Article : Google Scholar | |
Puwipirom H, Hirankarn N, Sodsai P, Avihingsanon Y, Wongpiyabovorn J and Palaga T: Increased interleukin-23 receptor(+) T cells in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Arthritis Res Ther. 12(R215)2010.PubMed/NCBI View Article : Google Scholar | |
Izati AF, Mohd Shukri ND, Wan Ghazali WS, Che Hussin CM and Wong KK: Increased IL-23R+ Th cells population exhibits higher SLEDAI-2K scores in systemic lupus erythematosus patients. Front Immunol. 12(690908)2021.PubMed/NCBI View Article : Google Scholar | |
Koga T, Ichinose K and Tsokos GC: T cells and IL-17 in lupus nephritis. Clin Immunol. 185:95–99. 2017.PubMed/NCBI View Article : Google Scholar | |
Martin JC, Baeten DL and Josien R: Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin Immunol. 154:1–12. 2014.PubMed/NCBI View Article : Google Scholar | |
Amarilyo G, Lourenço EV, Shi FD and La Cava A: IL-17 promotes murine lupus. J Immunol. 193:540–543. 2014.PubMed/NCBI View Article : Google Scholar | |
Dai H, He F, Tsokos GC and Kyttaris VC: IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J Immunol. 199:903–910. 2017.PubMed/NCBI View Article : Google Scholar | |
Lanzavecchia A: Antigen-specific interaction between T and B cells. Nature. 314:537–539. 1985.PubMed/NCBI View Article : Google Scholar | |
Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B, Fabien N, Cochat P, Pouteil-Noble C, Trolliet P, et al: Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol. 10:778–785. 2009.PubMed/NCBI View Article : Google Scholar | |
Yap DYH and Lai KN: Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: From basics to recent advances. J Biomed Biotechnol. 2010(365083)2010.PubMed/NCBI View Article : Google Scholar | |
Liu Y and La Cava A: Targeting BLyS in systemic lupus erythematosus. Recent Pat Inflamm Allergy Drug Discov. 6:91–96. 2012.PubMed/NCBI View Article : Google Scholar | |
López P, Rodríguez-Carrio J, Caminal-Montero L, Mozo L and Suárez A: A pathogenic IFNα, BLyS and IL-17 axis in systemic lupus erythematosus patients. Sci Rep. 6(20651)2016.PubMed/NCBI View Article : Google Scholar | |
Ozaki K, Spolski R, Feng CG, Qi CF, Cheng J, Sher A, Morse HC III, Liu C, Schwartzberg PL and Leonard WJ: A critical role for IL-21 in regulating immunoglobulin production. Science. 298:1630–1634. 2002.PubMed/NCBI View Article : Google Scholar | |
Kuchen S, Robbins R, Sims GP, Sheng C, Phillips TM, Lipsky PE and Ettinger R: Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol. 179:5886–5896. 2007.PubMed/NCBI View Article : Google Scholar | |
Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M, et al: Regulation of gut inflammation and Th17 cell response by interleukin-21. Gastroenterology. 134:1038–1048. 2008.PubMed/NCBI View Article : Google Scholar | |
Herber D, Brown TP, Liang S, Young DA, Collins M and Dunussi-Joannopoulos K: IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol. 178:3822–3830. 2007.PubMed/NCBI View Article : Google Scholar | |
Tsokos GC, Lo MS, Costa Reis P and Sullivan KE: New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 12:716–730. 2016.PubMed/NCBI View Article : Google Scholar | |
Stiehm ER: Joseph A: Bellanti (ed) immunology IV: Clinical applications in health and disease. J Clin Immunol. 32(647)2012.PubMed/NCBI View Article : Google Scholar | |
Vieira PL, Christensen JR, Minaee S, O'Neill EJ, Barrat FJ, Boonstra A, Barthlott T, Stockinger B, Wraith DC and O'Garra A: IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol. 172:5986–5993. 2004.PubMed/NCBI View Article : Google Scholar | |
Bellanti JA and Li D: Treg cells and epigenetic regulation. Adv Exp Med Biol. 1278:95–114. 2021.PubMed/NCBI View Article : Google Scholar | |
Sakaguchi S, Yamaguchi T, Nomura T and Ono M: Regulatory T cells and immune tolerance. Cell. 133:775–787. 2008.PubMed/NCBI View Article : Google Scholar | |
Lim HW, Hillsamer P, Banham AH and Kim CH: Cutting edge: Direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol. 175:4180–4183. 2005.PubMed/NCBI View Article : Google Scholar | |
Quaglino P, Ortoncelli M, Comessatti A, Ponti R, Novelli M, Bergallo M, Costa C, Cicchelli S, Savoia P and Bernengo MG: Circulating CD4+CD25 bright FOXP3+ T cells are up-regulated by biological therapies and correlate with the clinical response in psoriasis patients. Dermatology. 219:250–258. 2009.PubMed/NCBI View Article : Google Scholar | |
Yang HX, Zhang W, Zhao LD, Li Y, Zhang FC, Tang FL, He W and Zhang X: Are CD4+CD25-Foxp3+ cells in untreated new-onset lupus patients regulatory T cells? Arthritis Res Ther. 11(R153)2009.PubMed/NCBI View Article : Google Scholar | |
Wehrens EJ, Prakken BJ and van Wijk F: T cells out of control-impaired immune regulation in the inflamed joint. Nat Rev Rheumatol. 9:34–42. 2013.PubMed/NCBI View Article : Google Scholar | |
Shevach EM: Regulatory T cells in autoimmmunity*. Annu Rev Immunol. 18:423–449. 2000.PubMed/NCBI View Article : Google Scholar | |
Crispín JC, Kyttaris VC, Terhorst C and Tsokos GC: T cells as therapeutic targets in SLE. Nat Rev Rheumatol. 6:317–325. 2010.PubMed/NCBI View Article : Google Scholar | |
Scheinecker C, Bonelli M and Smolen JS: Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells. J Autoimmun. 35:269–275. 2010.PubMed/NCBI View Article : Google Scholar | |
Hagiwara E, Gourley MF, Lee S and Klinman DK: Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10: Interferon-gamma-secreting cells in the peripheral blood. Arthritis Rheum. 39:379–385. 1996.PubMed/NCBI View Article : Google Scholar | |
Rousset F, Garcia E, Defrance T, Péronne C, Vezzio N, Hsu DH, Kastelein R, Moore KW and Banchereau J: Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci USA. 89:1890–1893. 1992.PubMed/NCBI View Article : Google Scholar | |
Llorente L, Zou W, Levy Y, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J, Morel-Fourrier B, Brouet JC, Alarcon-Segovia D, Galanaud P and Emilie D: Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med. 181:839–844. 1995.PubMed/NCBI View Article : Google Scholar | |
Itoh K and Hirohata S: The role of IL-10 in human B cell activation, proliferation, and differentiation. J Immunol. 154:4341–4350. 1995.PubMed/NCBI | |
Ohl K and Tenbrock K: Regulatory T cells in systemic lupus erythematosus. Eur J Immunol. 45:344–355. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhao DM, Thornton AM, DiPaolo RJ and Shevach EM: Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 107:3925–3932. 2006.PubMed/NCBI View Article : Google Scholar | |
Kristensen M, Chu CQ, Eedy DJ, Feldmann M, Brennan FM and Breathnach SM: Localization of tumour necrosis factor-alpha (TNF-alpha) and its receptors in normal and psoriatic skin: Epidermal cells express the 55-kD but not the 75-kD TNF receptor. Clin Exp Immunol. 94:354–362. 1993.PubMed/NCBI View Article : Google Scholar | |
Kollias G and Kontoyiannis D: Role of TNF/TNFR in autoimmunity: Specific TNF receptor blockade may be advantageous to anti-TNF treatments. Cytokine Growth Factor Rev. 13:315–321. 2002.PubMed/NCBI View Article : Google Scholar | |
Aringer M, Feierl E, Steiner G, Stummvoll GH, Höfler E, Steiner CW, Radda I, Smole JS and Graninger WB: Increased bioactive TNF in human systemic lupus erythematosus: Associations with cell death. Lupus. 11:102–108. 2002.PubMed/NCBI View Article : Google Scholar | |
Kollias G, Kontoyiannis D, Douni E and Kassiotis G: The role of TNF/TNFR in organ-specific and systemic autoimmunity: Implications for the design of optimized ‘anti-TNF’ therapies. Curr Dir Autoimmun. 5:30–50. 2002.PubMed/NCBI View Article : Google Scholar | |
Segal R, Dayan M, Zinger H and Mozes E: Suppression of experimental systemic lupus erythematosus (SLE) in mice via TNF inhibition by an anti-TNFalpha monoclonal antibody and by pentoxiphylline. Lupus. 10:23–31. 2001.PubMed/NCBI View Article : Google Scholar | |
Aringer M, Graninger WB, Steiner G and Smolen JS: Safety and efficacy of tumor necrosis factor alpha blockade in systemic lupus erythematosus: An open-label study. Arthritis Rheum. 50:3161–3169. 2004.PubMed/NCBI View Article : Google Scholar | |
Takahashi H, Tsuji H, Hashimoto Y, Ishida-Yamamoto A and Iizuka H: Serum cytokines and growth factor levels in Japanese patients with psoriasis. Clin Exp Dermatol. 35:645–649. 2010.PubMed/NCBI View Article : Google Scholar | |
Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M and Tsokos GC: Pathogenesis of human systemic lupus erythematosus: A cellular perspective. Trends Mol Med. 23:615–635. 2017.PubMed/NCBI View Article : Google Scholar | |
Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, Kyttaris VC, Juang YT and Tsokos GC: Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 181:8761–8766. 2008.PubMed/NCBI View Article : Google Scholar | |
Yu JJ and Gaffen SL: Interleukin-17: A novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci. 13:170–177. 2008.PubMed/NCBI View Article : Google Scholar | |
Henriques A, Inês L, Couto M, Pedreiro S, Santos C, Magalhães M, Santos P, Velada I, Almeida A, Carvalheiro T, et al: Frequency and functional activity of Th17, Tc17 and other T-cell subsets in systemic lupus erythematosus. Cellular Immunology. 264:97–103. 2010.PubMed/NCBI View Article : Google Scholar | |
Suárez-Fueyo A, Bradley SJ, Klatzmann D and Tsokos GC: T cells and autoimmune kidney disease. Nat Rev Nephrol. 13:329–343. 2017.PubMed/NCBI View Article : Google Scholar | |
Ospelt C: Synovial fibroblasts in 2017. RMD Open. 3(e000471)2017.PubMed/NCBI View Article : Google Scholar | |
Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VE, Chang M, Ramos P, Baechler EC, Batliwalla FM, et al: Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet. 75:504–507. 2004.PubMed/NCBI View Article : Google Scholar | |
International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN). Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, Tsao BP, Vyse TJ, Langefeld CD, et al: Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 40:204–210. 2008.PubMed/NCBI View Article : Google Scholar | |
Smith RL, Warren RB, Eyre S, Ke X, Young HS, Allen M, Strachan D, McArdle W, Gittins MP, Barker JN, et al: Polymorphisms in the PTPN22 region are associated with psoriasis of early onset. Br J Dermatol. 158:962–968. 2008.PubMed/NCBI View Article : Google Scholar | |
Li Y, Liao W, Chang M, Schrodi SJ, Bui N, Catanese JJ, Poon A, Matsunami N, Callis-Duffin KP, Leppert MF, et al: Further genetic evidence for three psoriasis-risk genes: ADAM33, CDKAL1, and PTPN22. J Invest Dermatol. 129:629–634. 2009.PubMed/NCBI View Article : Google Scholar | |
Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, de Bakker PI, Le JM, Lee HS, Batliwalla F, et al: STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 357:977–986. 2007.PubMed/NCBI View Article : Google Scholar | |
Nair R, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJ, et al: Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 41:199–204. 2009.PubMed/NCBI View Article : Google Scholar | |
Zervou MI, Goulielmos GN, Castro-Giner F, Tosca AD and Krueger-Krasagakis S: STAT4 gene polymorphism is associated with psoriasis in the genetically homogeneous population of Crete, Greece. Hum Immunol. 70:738–741. 2009.PubMed/NCBI View Article : Google Scholar | |
Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2. Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, Barton A, Band G, Bellenguez C, et al: A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 42:985–990. 2010.PubMed/NCBI View Article : Google Scholar | |
Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, Belouchi M, Fournier H, Reinhard C, Ding J, et al: Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet. 42:991–995. 2010.PubMed/NCBI View Article : Google Scholar | |
Capon F, Burden AD, Trembath RC and Barker JN: Psoriasis and other complex trait dermatoses: From Loci to functional pathways. J Invest Dermatol. 132:915–922. 2012.PubMed/NCBI View Article : Google Scholar | |
Gregersen PK: Gaining insight into PTPN22 and autoimmunity. Nat Genet. 37:1300–1302. 2005.PubMed/NCBI View Article : Google Scholar | |
Siggs OM, Miosge LA, Yates AL, Kucharska EM, Sheahan D, Brdicka T, Weiss A, Liston A and Goodnow CC: Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity. 27:912–926. 2007.PubMed/NCBI View Article : Google Scholar | |
Wang H, Wang Z, Rani PL, Fu X, Yu W, Bao F, Yu G, Li J, Li L, Sun L, et al: Identification of PTPN22, ST6GAL1 and JAZF1 as psoriasis risk genes demonstrates shared pathogenesis between psoriasis and diabetes. Exp Dermatol. 26:1112–1117. 2017.PubMed/NCBI View Article : Google Scholar | |
Piotrowski P, Lianeri M, Wudarski M, Olesińska M and Jagodziński PP: Contribution of STAT4 gene single-nucleotide polymorphism to systemic lupus erythematosus in the Polish population. Mol Biol Rep. 39:8861–8866. 2012.PubMed/NCBI View Article : Google Scholar | |
Shamilov R and Aneskievich BJ: TNIP1 in autoimmune diseases: Regulation of toll-like receptor signaling. J Immunol Res. 2018(3491269)2018.PubMed/NCBI View Article : Google Scholar | |
He CF, Liu YS, Cheng YL, Gao JP, Pan TM, Han JW, Quan C, Sun LD, Zheng HF, Zuo XB, et al: TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus. 19:1181–1186. 2010.PubMed/NCBI View Article : Google Scholar | |
Nanda SK, Venigalla RK, Ordureau A, Patterson-Kane JC, Powell DW, Toth R, Arthur JS and Cohen P: Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J Exp Med. 208:1215–1228. 2011.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Yan H, Song Z, Chen F, Wang H, Niu J, Shi X, Zhang D, Zhang N, Zhai Z, et al: Downregulation of TNIP1 expression leads to increased proliferation of human keratinocytes and severer psoriasis-like conditions in an imiquimod-induced mouse model of dermatitis. PLoS One. 10(e0127957)2015.PubMed/NCBI View Article : Google Scholar | |
Li Y, Cheng H, Zuo XB, Sheng YJ, Zhou FS, Tang XF, Tang HY, Gao JP, Zhang Z, He SM, et al: Association analyses identifying two common susceptibility loci shared by psoriasis and systemic lupus erythematosus in the Chinese Han population. J Med Genet. 50:812–818. 2013.PubMed/NCBI View Article : Google Scholar | |
Coto-Segura P, Coto E, González-Lara L, Alonso B, Gómez J, Cuesta-Llavona E and Queiro R: Gene variant in the NF-κB pathway inhibitor NFKBIA distinguishes patients with psoriatic arthritis within the spectrum of psoriatic disease. Biomed Res Int. 2019(1030256)2019.PubMed/NCBI View Article : Google Scholar | |
Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG and Russell CB: The emerging role of IL-17 in the pathogenesis of psoriasis: Preclinical and clinical findings. J Invest Dermatol. 133:17–26. 2013.PubMed/NCBI View Article : Google Scholar | |
Yin X, Zhang S, Li B, Zhang Y and Zhang X: IL28RA inhibits human epidermal keratinocyte proliferation by inhibiting cell cycle progression. Mol Biol Rep. 46:1189–1197. 2019.PubMed/NCBI View Article : Google Scholar | |
Wen Z, Xu L, Xu W, Yin Z, Gao X and Xiong S: Interleukin-17 expression positively correlates with disease severity of lupus nephritis by increasing anti-double-stranded DNA antibody production in a lupus model induced by activated lymphocyte derived DNA. PLoS One. 8(e58161)2013.PubMed/NCBI View Article : Google Scholar | |
Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, Puig L, Nakagawa H, Spelman L, Sigurgeirsson B, et al: Secukinumab in plaque psoriasis-results of two phase 3 trials. N Engl J Med. 371:326–338. 2014.PubMed/NCBI View Article : Google Scholar | |
Griffiths CE, Reich K, Lebwohl M, van de Kerkhof P, Paul C, Menter A, Cameron GS, Erickson J, Zhang L, Secrest RJ, et al: Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): Results from two phase 3 randomised trials. Lancet. 386:541–551. 2015.PubMed/NCBI View Article : Google Scholar | |
Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, Puig L, Papp K, Spelman L, Toth D, Kerdel F, et al: Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 373:1318–1328. 2015.PubMed/NCBI View Article : Google Scholar | |
Satoh Y, Nakano K, Yoshinari H, Nakayamada S, Iwata S, Kubo S, Miyagawa I, Yoshikawa M, Miyazaki Y, Saito K and Tanaka Y: A case of refractory lupus nephritis complicated by psoriasis vulgaris that was controlled with secukinumab. Lupus. 27:1202–1206. 2018.PubMed/NCBI View Article : Google Scholar | |
van Vollenhoven RF, Hahn BH, Tsokos GC, Wagner CL, Lipsky P, Touma Z, Werth VP, Gordon RM, Zhou B, Hsu B, et al: Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: Results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet. 392:1330–1339. 2018.PubMed/NCBI View Article : Google Scholar | |
Raychaudhuri SK, Saxena A and Raychaudhuri SP: Role of IL-17 in the pathogenesis of psoriatic arthritis and axial spondyloarthritis. Clin Rheumatol. 34:1019–1023. 2015.PubMed/NCBI View Article : Google Scholar | |
Sato K, Aizaki Y, Yoshida Y and Mimura T: Treatment of psoriatic arthritis complicated by systemic lupus erythematosus with the IL-17 blocker secukinumab and an analysis of the serum cytokine profile. Mod Rheumatol Case Rep. 4:181–185. 2020.PubMed/NCBI View Article : Google Scholar | |
Tanaka Y, Kubo S, Iwata S, Yoshikawa M and Nakayamada S: B cell phenotypes, signaling and their roles in secretion of antibodies in systemic lupus erythematosus. Clin Immunol. 186:21–25. 2018.PubMed/NCBI View Article : Google Scholar | |
Yap DYH and Chan TM: B cell abnormalities in systemic lupus erythematosus and lupus nephritis-role in pathogenesis and effect of immunosuppressive treatments. Int J Mol Sci. 20(6231)2019.PubMed/NCBI View Article : Google Scholar | |
Guidelli GM, Fioravanti A, Rubegni P and Feci L: Induced psoriasis after rituximab therapy for rheumatoid arthritis: A case report and review of the literature. Rheumatol Int. 33:2927–2930. 2013.PubMed/NCBI View Article : Google Scholar | |
Edwards JCW, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM and Shaw T: Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med. 350:2572–2581. 2004.PubMed/NCBI View Article : Google Scholar | |
Leandro MJ, Cambridge G, Ehrenstein MR and Edwards JCW: Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 54:613–620. 2006.PubMed/NCBI View Article : Google Scholar | |
Dumoitier N, Terrier B, London J, Lofek S and Mouthon L: Implication of B lymphocytes in the pathogenesis of ANCA-associated vasculitides. Autoimmun Rev. 14:996–1004. 2015.PubMed/NCBI View Article : Google Scholar | |
Joly P, Maho-Vaillant M, Prost-Squarcioni C, Hebert V, Houivet E, Calbo S, Caillot F, Golinski ML, Labeille B, Picard-Dahan C, et al: First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): A prospective, multicentre, parallel-group, open-label randomised trial. Lancet. 389:2031–2040. 2017.PubMed/NCBI View Article : Google Scholar | |
van de Veerdonk FL, Lauwerys B, Marijnissen RJ, Timmermans K, Di Padova F, Koenders MI, Gutierrez-Roelens I, Durez P, Netea MG, van der Meer JW, et al: The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis Rheum. 63:1507–1516. 2011.PubMed/NCBI View Article : Google Scholar | |
Chang YS, Lee HT, Chen WS, Hsiao KH, Chen MH, Tsai CY and Chou CT: Treatment of psoriasis with rituximab. J Am Acad Dermatol. 66:e184–e185. 2012.PubMed/NCBI View Article : Google Scholar | |
Dass S, Vital EM and Emery P: Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum. 56:2715–2718. 2007.PubMed/NCBI View Article : Google Scholar | |
Markatseli TE, Kaltsonoudis ES, Voulgari PV, Zioga A and Drosos AA: Induction of psoriatic skin lesions in a patient with rheumatoid arthritis treated with rituximab. Clin Exp Rheumatol. 27:996–998. 2009.PubMed/NCBI | |
Collamer AN, Guerrero KT, Henning JS and Battafarano DF: Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: A literature review and potential mechanisms of action. Arthritis Rheum. 59:996–1001. 2008.PubMed/NCBI View Article : Google Scholar | |
Palucka AK, Blanck JP, Bennett L, Pascual V and Banchereau J: Cross-regulation of TNF and IFN-alpha in autoimmune diseases. Proc Natl Acad Sci USA. 102:3372–3377. 2005.PubMed/NCBI View Article : Google Scholar | |
Schmitt J, Zhang Z, Wozel G, Meurer M and Kirch W: Efficacy and tolerability of biologic and nonbiologic systemic treatments for moderate-to-severe psoriasis: Meta-analysis of randomized controlled trials. Br J Dermatol. 159:513–526. 2008.PubMed/NCBI View Article : Google Scholar | |
Tracey D, Klareskog L, Sasso EH, Salfeld JG and Tak PP: Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol Ther. 117:244–279. 2008.PubMed/NCBI View Article : Google Scholar | |
Joseph A, Brasington R, Kahl L, Ranganathan P, Cheng TP and Atkinson J: Immunologic rheumatic disorders. J Allergy Clin Immunol. 125 (2 Suppl 2):S204–S215. 2010.PubMed/NCBI View Article : Google Scholar | |
Norris DA, Whang K, David-Bajar K and Bennion SD: The influence of ultraviolet light on immunological cytotoxicity in the skin. Photochem Photobiol. 65:636–646. 1997.PubMed/NCBI View Article : Google Scholar | |
Köck A, Schwarz T, Kirnbauer R, Urbanski A, Perry P, Ansel JC and Luger TA: Human keratinocytes are a source for tumor necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med. 172:1609–1614. 1990.PubMed/NCBI View Article : Google Scholar | |
Takashima A and Bergstresser PR: Impact of UVB radiation on the epidermal cytokine network. Photochem Photobiol. 63:397–400. 1996.PubMed/NCBI View Article : Google Scholar | |
Meller S, Winterberg F, Gilliet M, Müller A, Lauceviciute I, Rieker J, Neumann NJ, Kubitza R, Gombert M, Bünemann E, et al: Ultraviolet radiation-induced injury, chemokines, and leukocyte recruitment: An amplification cycle triggering cutaneous lupus erythematosus. Arthritis Rheum. 52:1504–1516. 2005.PubMed/NCBI View Article : Google Scholar | |
Kuhn A and Sontheimer RD: Cutaneous lupus erythematosus: Molecular and cellular basis of clinical findings. Curr Dir Autoimmun. 10:119–140. 2008.PubMed/NCBI View Article : Google Scholar | |
Muñoz LE, Lauber K, Schiller M, Manfredi AA and Herrmann M: The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol. 6:280–289. 2010.PubMed/NCBI View Article : Google Scholar | |
Kochevar IE: Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus. J Invest Dermatol. 85 (1 Suppl):140s–143s. 1985.PubMed/NCBI View Article : Google Scholar | |
Wolf R, Schiavo AL, Lombardi ML, de Angelis F and Ruocco V: The in vitro effect of hydroxychloroquine on skin morphology in psoriasis. Int J Dermatol. 38:154–157. 1999.PubMed/NCBI View Article : Google Scholar | |
Harrison CA, Layton CM, Hau Z, Bullock AJ, Johnson TS and MacNeil S: Transglutaminase inhibitors induce hyperproliferation and parakeratosis in tissue-engineered skin. Br J Dermatol. 156:247–257. 2007.PubMed/NCBI View Article : Google Scholar | |
Tzu J and Kerdel F: From conventional to cutting edge: The new era of biologics in treatment of psoriasis. Dermatol Ther. 21:131–141. 2008.PubMed/NCBI View Article : Google Scholar | |
Costa MF, Said NR and Zimmermann B: Drug-induced lupus due to anti-tumor necrosis factor alpha agents. Semin Arthritis Rheum. 37:381–387. 2008.PubMed/NCBI View Article : Google Scholar | |
Grönhagen CM, Fored CM, Linder M, Granath F and Nyberg F: Subacute cutaneous lupus erythematosus and its association with drugs: A population-based matched case-control study of 234 patients in Sweden. Br J Dermatol. 167:296–305. 2012.PubMed/NCBI View Article : Google Scholar | |
Ramos-Casals M, Brito-Zerón P, Muñoz S, Soria N, Galiana D, Bertolaccini L, Cuadrado MJ and Khamashta MA: Autoimmune diseases induced by TNF-targeted therapies: Analysis of 233 cases. Medicine (Baltimore). 86:242–251. 2007.PubMed/NCBI View Article : Google Scholar | |
Williams VL and Cohen PR: TNF alpha antagonist-induced lupus-like syndrome: Report and review of the literature with implications for treatment with alternative TNF alpha antagonists. Int J Dermatol. 50:619–625. 2011.PubMed/NCBI View Article : Google Scholar | |
Mudduluru BM, Shah S, Shamah S and Swaminath A: TNF-alpha antagonist induced lupus on three different agents. Postgrad Med. 129:304–306. 2017.PubMed/NCBI View Article : Google Scholar | |
Wetter DA and Davis MDP: Lupus-like syndrome attributable to anti-tumor necrosis factor alpha therapy in 14 patients during an 8-year period at Mayo clinic. Mayo Clin Proc. 84:979–984. 2009.PubMed/NCBI View Article : Google Scholar | |
Hsieh CY and Tsai TF: Aggravation of discoid lupus erythematosus in a patient with psoriasis and psoriatic arthritis during treatment of secukinumab: A case report and review of literature. Lupus. 31:891–894. 2022.PubMed/NCBI View Article : Google Scholar | |
Anstey NM, Bastian I, Dunckley H and Currie BJ: Systemic lupus erythematosus (SLE): Different prevalences in different populations of Australian aborigines. Aust N Z J Med. 25(736)1995.PubMed/NCBI View Article : Google Scholar | |
Duarte-García A, Hocaoglu M, Valenzuela-Almada M, Osei-Onomah SA, Dabit JY, Sanchez-Rodriguez A, Duong SQ, Giblon RE, Langenfeld HE, Alarcón GS, et al: Rising incidence and prevalence of systemic lupus erythematosus: A population-based study over four decades. Ann Rheum Dis. (annrheumdis-2022-222276)2022.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Helms C, Cao L, Krueger JG, Wijsman EM, Chamian F, Gordon D, Heffernan M, Daw JA, Robarge J, Ott J, et al: A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet. 35:349–356. 2003.PubMed/NCBI View Article : Google Scholar | |
Hüffmeier U, Uebe S, Ekici AB, Bowes J, Giardina E, Korendowych E, Juneblad K, Apel M, McManus R, Ho P, et al: Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat Genet. 42:996–999. 2010.PubMed/NCBI View Article : Google Scholar | |
Uddin M, Sturge M, Rahman P and Woods MO: Autosome-wide copy number variation association analysis for rheumatoid arthritis using the WTCCC high-density SNP genotype data. J Rheumatol. 38:797–801. 2011.PubMed/NCBI View Article : Google Scholar | |
Perricone C, Ciccacci C, Ceccarelli F, Di Fusco D, Spinelli FR, Cipriano E, Novelli G, Valesini G, Conti F and Borgiani P: TRAF3IP2 gene and systemic lupus erythematosus: Association with disease susceptibility and pericarditis development. Immunogenetics. 65:703–709. 2013.PubMed/NCBI View Article : Google Scholar | |
Wu L, Wang C, Boisson B, Misra S, Rayman P, Finke JH, Puel A, Casanova JL and Li X: The differential regulation of human ACT1 isoforms by Hsp90 in IL-17 signaling. J Immunol. 193:1590–1599. 2014.PubMed/NCBI View Article : Google Scholar | |
Petrić M and Radić M: Is Th17-targeted therapy effective in systemic lupus erythematosus? Curr Issues Mol Biol. 45:4331–4343. 2023.PubMed/NCBI View Article : Google Scholar |