1
|
Rousseau M, Denhez B, Spino C, Lizotte F, Guay A, Côté AM, Burger D and Geraldes P: Reduction of DUSP4 contributes to podocytes oxidative stress, insulin resistance and diabetic nephropathy. Biochem Biophys Res Commun. 624:127–133. 2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Thipsawat S: Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab Vasc Dis Res. 18(14791641211058856)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Giralt-López A, Molina-Van den Bosch M, Vergara A, García-Carro C, Seron D, Jacobs-Cachá C and Soler MJ: Revisiting experimental models of diabetic nephropathy. Int J Mol Sci. 21(3587)2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Tang PM, Zhang YY, Hung JS, Chung JY, Huang XR, To KF and Lan HY: DPP4/CD32b/NF-κB Circuit: A novel druggable target for inhibiting CRP-Driven diabetic nephropathy. Mol Ther. 29:365–375. 2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhang Z, Zhang L and Xu H: Effect of Astragalus polysaccharide in treatment of diabetes mellitus: A narrative review. J Tradit Chin Med. 39:133–138. 2019.PubMed/NCBI
|
6
|
Yang S, Wang L, Xie Z, Zeng Y, Xiong Q, Pei T, Wei D and Cheng W: The combination of salidroside and hedysari radix polysaccharide inhibits mitochondrial damage and apoptosis via the PKC/ERK Pathway. Evid Based Complement Alternat Med. 2022(9475703)2022.PubMed/NCBI View Article : Google Scholar
|
7
|
Tang JL, Xin M and Zhang LC: Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury. Aging. 14:5855–5877, 35859295. 2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Meng X, Wei M, Wang D, Qu X, Zhang K, Zhang N and Li X: Astragalus polysaccharides protect renal function and affect the TGF-β/Smad signaling pathway in streptozotocin-induced diabetic rats. J Int Med Res. 48(300060520903612)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Tang JL, Xin M and Zhang LC: Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury. Aging (Albany NY). 14:5855–5877. 2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang Y, Tao C, Xuan C, Jiang J and Cao W: Transcriptomic analysis reveals the protection of astragaloside IV against diabetic nephropathy by modulating inflammation. Oxid Med Cell Longev. 2020(9542165)2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Zhang YY, Tan RZ, Zhang XQ, Yu Y and Yu C: Calycosin ameliorates diabetes-induced renal inflammation via the NF-κB pathway in vitro and in vivo. Med Sci Monit. 25:1671–1678. 2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar
|
13
|
Jung CY and Yoo TH: Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes Metab J. 46:181–197. 2022.PubMed/NCBI View Article : Google Scholar
|
14
|
Hu F, Li X, Zhao L, Feng S and Wang C: Antidiabetic properties of purified polysaccharide from Hedysarum polybotrys. Can J Physiol Pharmacol. 88:64–72. 2010.PubMed/NCBI View Article : Google Scholar
|
15
|
Feng H, Zhu X, Tang Y, Fu S, Kong B and Liu X: Astragaloside IV ameliorates diabetic nephropathy in db/db mice by inhibiting NLRP3 inflammasome-mediated inflammation. Int J Mol Med. 48(164)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Wang E, Wang L, Ding R, Zhai M, Ge R, Zhou P, Wang T, Fang H, Wang J and Huang J: Astragaloside IV acts through multi-scale mechanisms to effectively reduce diabetic nephropathy. Pharmacol Res. 157(104831)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Behl T, Sharma E, Sehgal A, Kaur I, Kumar A, Arora R, Pal G, Kakkar M, Kumar R and Bungau S: Expatiating the molecular approaches of HMGB1 in diabetes mellitus: Highlighting signalling pathways via RAGE and TLRs. Mol Biol Rep. 48:1869–1881. 2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Huang J, Zeng T, Tian Y, Wu Y, Yu J, Pei Z and Tan L: Clinical significance of high-mobility group box-1 (HMGB1) in subjects with type 2 diabetes mellitus (T2DM) combined with chronic obstructive pulmonary disease (COPD). J Clin Lab Anal. 33(e22910)2010.
|
19
|
Zhou Y, Liu SX, Zhou YN, Wang J and Ji R: Research on the relationship between RAGE and its ligand HMGB1, and prognosis and pathogenesis of gastric cancer with diabetes mellitus. Eur Rev Med Pharmacol Sci. 25:1339–1350. 2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Santangelo C, Filardi T, Perrone G, Mariani M, Mari E, Scazzocchio B, Masella R, Brunelli R, Lenzi A, Zicari A and Morano S: Cross-talk between fetal membranes and visceral adipose tissue involves HMGB1-RAGE and VIP-VPAC2 pathways in human gestational diabetes mellitus. Acta Diabetol. 56:681–689. 2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Yang L, Zhou L, Wang X, Wang W and Wang J: Inhibition of HMGB1 involved in the protective of salidroside on liver injury in diabetes mice. Int Immunopharmacol. 89(Pt A)(106987)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Wang J, Wang L, Zhou J, Qin A and Chen Z: The protective effect of formononetin on cognitive impairment in streptozotocin (STZ)-induced diabetic mice. Biomed Pharmacother. 106:1250–1257. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
El-Azab MF, Al-Karmalawy AA, Antar SA, Hanna PA, Tawfik KM and Hazem RM: A novel role of Nano selenium and sildenafil on streptozotocin-induced diabetic nephropathy in rats by modulation of inflammatory, oxidative, and apoptotic pathways. Life Sci. 303(120691)2022.PubMed/NCBI View Article : Google Scholar
|
24
|
Chen X, Ma J, Kwan T, Stribos EGD, Messchendorp AL, Loh YW, Wang X, Paul M, Cunningham EC, Habib M, et al: Blockade of HMGB1 attenuates diabetic nephropathy in mice. Sci Rep. 8(8319)2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhou B, Li Q, Wang J, Chen P and Jiang S: Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling. Food Chem Toxicol. 123:16–27. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhang Y: MiR-92d-3p suppresses the progression of diabetic nephropathy renal fibrosis by inhibiting the C3/HMGB1/TGF-β1 pathway. Biosci Rep. 41(BSR20203131)2021.PubMed/NCBI View Article : Google Scholar
|
27
|
Pérez-Morales RE, Del Pino MD, Valdivielso JM, Ortiz A, Mora-Fernández C and Navarro-González JF: Inflammation in Diabetic Kidney Disease. Nephron. 143:12–16. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Wang S, Dong J and Huang L: Cytokine polymorphisms and predisposition to diabetic nephropathy: A meta-analysis. Int Arch Allergy Immunol. 182:158–165. 2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Araújo LS, Torquato BGS, da Silva CA, Dos Reis Monteiro MLG, Dos Santos Martins ALM, da Silva MV, Dos Reis MA and Machado JR: Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol. 21(308)2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Guan Y, Davis L, Breyer MD and Hao CM: Cyclooxygenase-2 contributes to diabetic nephropathy through glomerular EP4 receptor. Prostaglandins Other Lipid Mediat. 159(106621)2022.PubMed/NCBI View Article : Google Scholar
|
31
|
Wang L, Wang HL, Liu TT and Lan HY: TGF-Beta as a master regulator of diabetic nephropathy. Int J Mol Sci. 22(7881)2021.PubMed/NCBI View Article : Google Scholar
|