1
|
Montero PH and Patel SG: Cancer of the
oral cavity. Surg Oncol Clin N Am. 24:491–508. 2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Ren ZH, Hu CY, He HR, Li YJ and Lyu J:
Global and regional burdens of oral cancer from 1990 to 2017:
Results from the global burden of disease study. Cancer Commun
(Lond). 40:81–92. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Gonzalez-Moles MA, Warnakulasuriya S,
Gonzalez-Ruiz I, González-Ruiz L, Ayén Á, Lenouvel D, Ruiz-Ávila I
and Ramos-García P: Clinicopathological and prognostic
characteristics of oral squamous cell carcinomas arising in
patients with oral lichen planus: A systematic review and a
comprehensive meta-analysis. Oral Oncol. 106(104688)2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Colevas AD, Yom SS, Pfister DG, Spencer S,
Adelstein D, Adkins D, Brizel DM, Burtness B, Busse PM, Caudell JJ,
et al: NCCN Guidelines Insights: Head and Neck Cancers, Version
1.2018. J Natl Compr Canc Netw. 16:479–490. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Panzarella V, Pizzo G, Calvino F,
Compilato D, Colella G and Campisi G: Diagnostic delay in oral
squamous cell carcinoma: The role of cognitive and psychological
variables. Int J Oral Sci. 6:39–45. 2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Gao F, Wang X, Chen S, Xu T, Wang X, Shen
Y, Dong F, Zhong S and Shen Z: CIP2A depletion potentiates the
chemosensitivity of cisplatin by inducing increased apoptosis in
bladder cancer cells. Oncol Rep. 40:2445–2454. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen D, Fan S, Wang J, Liang Y, Li P, Lv
X, Sun Y, Wang Q, Liu H, Zhang C and Yi Y: Cip2a induces arginine
biosynthesis and promotes tumor progression in non-small cell lung
cancer. Mol Carcinog. 62:561–572. 2023.PubMed/NCBI View
Article : Google Scholar
|
8
|
Jin L, Si Y, Hong X, Liu P, Zhu B, Yu H,
Zhao X, Qin S, Xiong M, Liu Y, et al: Ethoxysanguinarine inhibits
viability and induces apoptosis of colorectal cancer cells by
inhibiting CIP2A. Int J Oncol. 52:1569–1578. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Velmurugan BK, Wang HK, Chung CM, Lee CH,
Huang LR, Yeh KT and Lin SH: CIP2A overexpression in Taiwanese oral
cancer patients. Cancer Manag Res. 11:2589–2594. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Alzahrani R, Alrehaili AA, Gharib AF,
Anjum F, Ismail KA and Elsawy WH: Cancerous inhibitor of protein
phosphatase 2A as a molecular marker for aggressiveness and
survival in oral squamous cell carcinoma. J Cancer Prev. 25:21–26.
2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Guenebeaud C, Goldschneider D, Castets M,
Guix C, Chazot G, Delloye-Bourgeois C, Eisenberg-Lerner A, Shohat
G, Zhang M, Laudet V, et al: The dependence receptor UNC5H2/B
triggers apoptosis via PP2A-mediated dephosphorylation of DAP
kinase. Mol Cell. 40:863–876. 2010.PubMed/NCBI View Article : Google Scholar
|
12
|
Gao H, Li Y, Lin T, Cheng Y and Ma Y:
Downregulation of CIP2A inhibits cancer cell proliferation and
vascularization in renal clear cell carcinoma. Biomed Pap Med Fac
Univ Palacky Olomouc Czech Repub. 164:196–202. 2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Tian X, Tao F, Zhang B, Dong JT and Zhang
Z: The miR-203/SNAI2 axis regulates prostate tumor growth,
migration, angiogenesis and stemness potentially by modulating
GSK-3β/β-CATENIN signal pathway. IUBMB Life. 70:224–236.
2018.PubMed/NCBI View
Article : Google Scholar
|
14
|
Fei HR, Cui LY, Zhang ZR, Zhao Y and Wang
FZ: Caudatin inhibits carcinomic human alveolar basal epithelial
cell growth and angiogenesis through modulating
GSK3beta/beta-catenin pathway. J Cell Biochem. 113:3403–3410.
2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Li J, Sun S, Li J, Zhao X, Li Z, Sha T and
Cui Z: NCAPG, mediated by miR-378a-3p, regulates cell
proliferation, cell cycle progression, and apoptosis of oral
squamous cell carcinoma through the GSK-3β/β-catenin signaling.
Neoplasma. 68:1201–1211. 2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Lei N, Peng B and Zhang JY: CIP2A
regulates cell proliferation via the AKT signaling pathway in human
lung cancer. Oncol Rep. 32:1689–1694. 2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Laine A, Sihto H, Come C, Rosenfeldt MT,
Zwolinska A, Niemelä M, Khanna A, Chan EK, Kähäri VM,
Kellokumpu-Lehtinen PL, et al: Senescence sensitivity of breast
cancer cells is defined by positive feedback loop between CIP2A and
E2F1. Cancer Discov. 3:182–197. 2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Liu L, Liang D, Zheng Q, Zhao M, Lv R,
Tang J and Chen N: Berbamine dihydrochloride suppresses the
progression of colorectal cancer via RTKs/Akt axis. J
Ethnopharmacol. 303(116025)2023.PubMed/NCBI View Article : Google Scholar
|
19
|
Wang W, Yu S, Li W, Hu H and Zou G:
Silencing of lncRNA SNHG17 inhibits the tumorigenesis of epithelial
ovarian cancer through regulation of miR-485-5p/AKT1 axis. Biochem
Biophys Res Commun. 637:117–126. 2022.PubMed/NCBI View Article : Google Scholar
|
20
|
Li N, Yang F, Liu DY, Guo JT, Ge N and Sun
SY: Scoparone inhibits pancreatic cancer through PI3K/Akt signaling
pathway. World J Gastrointest Oncol. 13:1164–1183. 2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Sun EC, Dong SS, Li ZJ and Li CX:
Clinicopathological significance of AKT1 and PLK1 expression in
oral squamous cell carcinoma. Dis Markers.
2022(7300593)2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Sun X, Hu F, Hou Z, Chen Q, Lan J, Luo X,
Wang G, Hu J and Cao Z: SIX4 activates Akt and promotes tumor
angiogenesis. Exp Cell Res. 383(111495)2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Sagredo AI, Sagredo EA, Cappelli C, Báez
P, Andaur RE, Blanco C, Tapia JC, Echeverría C, Cerda O, Stutzin A,
et al: TRPM4 regulates Akt/GSK3-β activity and enhances β-catenin
signaling and cell proliferation in prostate cancer cells. Mol
Oncol. 12:151–165. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Deng YQ, Kong GY, Li S, Li F and Wen SL:
Upregulation of lnc-ZNF281 Inhibits the Progression of Glioma via
the AKT/GSK-3β/ β-Catenin Signaling Pathway. J Immunol Res.
2021(5573071)2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Roy A, Ansari SA, Das K, Prasad R,
Bhattacharya A, Mallik S, Mukherjee A and Sen P: Coagulation factor
VIIa-mediated protease-activated receptor 2 activation leads to
β-catenin accumulation via the AKT/GSK3β pathway and contributes to
breast cancer progression. J Biol Chem. 292:13688–13701.
2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Dave K, Ali A and Magalhaes M: Increased
expression of PD-1 and PD-L1 in oral lesions progressing to oral
squamous cell carcinoma: A pilot study. Sci Rep.
10(9705)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Fanelli M, Locopo N, Gattuso D and
Gasparini G: Assessment of tumor vascularization:
Immunohistochemical and non-invasive methods. Int J Biol Markers.
14:218–231. 1999.PubMed/NCBI View Article : Google Scholar
|
28
|
Carmeliet P and Jain RK: Angiogenesis in
cancer and other diseases. Nature. 407:249–257. 2000.PubMed/NCBI View
Article : Google Scholar
|
29
|
Lugano R, Ramachandran M and Dimberg A:
Tumor angiogenesis: Causes, consequences, challenges and
opportunities. Cell Mol Life Sci. 77:1745–1770. 2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Carmeliet P and Jain RK: Molecular
mechanisms and clinical applications of angiogenesis. Nature.
473:298–307. 2011.PubMed/NCBI View Article : Google Scholar
|
31
|
Marla V, Hegde V and Shrestha A:
Relationship of Angiogenesis and Oral Squamous Cell Carcinoma.
Kathmandu Univ Med J (KUMJ). 13:178–185. 2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Soofiyani SR, Hejazi MS and Baradaran B:
The role of CIP2A in cancer: A review and update. Biomed
Pharmacother. 96:626–633. 2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Zhang Y, Fang L, Zang Y, Ren J and Xu Z:
CIP2A promotes proliferation, invasion and chemoresistance to
cisplatin in renal cell carcinoma. J Cancer. 9:4029–4038.
2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Zheng Z, Qiao Z, Chen W, Gong R, Wang Y,
Xu L, Ma Y, Zhang L, Lu Y, Jiang B, et al: CIP2A regulates
proliferation and apoptosis of multiple myeloma cells. Mol Med Rep.
14:2705–2709. 2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Zhai M, Cong L, Han Y and Tu G: CIP2A is
overexpressed in osteosarcoma and regulates cell proliferation and
invasion. Tumour Biol. 35:1123–1128. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Yu N, Zhang T, Zhao D, Cao Z, Du J and
Zhang Q: CIP2A is overexpressed in human endometrioid
adenocarcinoma and regulates cell proliferation, invasion and
apoptosis. Pathol Res Pract. 214:233–239. 2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Chen XD, Tang SX, Zhang JH, Zhang LT and
Wang YW: CIP2A, an oncoprotein, is associated with cell
proliferation, invasion and migration in laryngeal carcinoma cells.
Oncol Rep. 38:1005–1012. 2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Lin YC, Chen KC, Chen CC, Cheng AL and
Chen KF: CIP2A-mediated Akt activation plays a role in
bortezomib-induced apoptosis in head and neck squamous cell
carcinoma cells. Oral Oncol. 48:585–593. 2012.PubMed/NCBI View Article : Google Scholar
|
39
|
Feng F, Cheng P, Wang C, Wang Y and Wang
W: Polyphyllin I and VII potentiate the chemosensitivity of
A549/DDP cells to cisplatin by enhancing apoptosis, reversing EMT
and suppressing the CIP2A/AKT/mTOR signaling axis. Oncol Lett.
18:5428–5436. 2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Zhang G, Liu Z, Xu H and Yang Q:
miR-409-3p suppresses breast cancer cell growth and invasion by
targeting Akt1. Biochem Biophys Res Commun. 469:189–195.
2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Deng T, Shen P, Li A, Zhang Z, Yang H,
Deng X, Peng X, Hu Z, Tang Z, Liu J, et al: CCDC65 as a new
potential tumor suppressor induced by metformin inhibits activation
of AKT1 via ubiquitination of ENO1 in gastric cancer. Theranostics.
11:8112–8128. 2021.PubMed/NCBI View Article : Google Scholar
|
42
|
Tan J, Li C, Ren L, Zhu X, Hua F and Fu Y:
miR-451a suppresses papillary thyroid cancer cell proliferation and
invasion and facilitates apoptosis through targeting DCBLD2 and
AKT1. Mol Cell Probes. 66(101863)2022.PubMed/NCBI View Article : Google Scholar
|
43
|
Alwhaibi A, Verma A, Adil MS and Somanath
PR: The unconventional role of Akt1 in the advanced cancers and in
diabetes-promoted carcinogenesis. Pharmacol Res.
145(104270)2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Yang F, Fang E, Mei H, Chen Y, Li H, Li D,
Song H, Wang J, Hong M, Xiao W, et al: Cis-Acting circ-CTNNB1
Promotes β-Catenin Signaling and Cancer Progression via
DDX3-Mediated Transactivation of YY1. Cancer Res. 79:557–571.
2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhang X, Wang L and Qu Y: Targeting the
β-catenin signaling for cancer therapy. Pharmacol Res.
160(104794)2020.PubMed/NCBI View Article : Google Scholar
|
46
|
Song M, Pan Q, Yang J, He J, Zeng J, Cheng
S, Huang Y, Zhou ZQ, Zhu Q, Yang C, et al: Galectin-3 favours
tumour metastasis via the activation of beta-catenin signalling in
hepatocellular carcinoma. Br J Cancer. 123:1521–1534.
2020.PubMed/NCBI View Article : Google Scholar
|
47
|
Rubinfeld B, Albert I, Porfiri E, Fiol C,
Munemitsu S and Polakis P: Binding of GSK3beta to the
APC-beta-catenin complex and regulation of complex assembly.
Science. 272:1023–1026. 1996.PubMed/NCBI View Article : Google Scholar
|
48
|
Chua HH, Tsuei DJ, Lee PH, Jeng YM, Lu J,
Wu JF, Su DS, Chen YH, Chien CS, Kao PC, et al: RBMY, a novel
inhibitor of glycogen synthase kinase 3β, increases tumor stemness
and predicts poor prognosis of hepatocellular carcinoma.
Hepatology. 62:1480–1496. 2015.PubMed/NCBI View Article : Google Scholar
|
49
|
Pan J, Fan Z, Wang Z, Dai Q, Xiang Z, Yuan
F, Yan M, Zhu Z, Liu B and Li C: CD36 mediates palmitate
acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin
pathway. J Exp Clin Cancer Res. 38(52)2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Yang L, Tan W, Wei Y, Xie Z, Li W, Ma X,
Wang Q, Li H, Zhang Z, Shang C and Chen Y: CircLIFR suppresses
hepatocellular carcinoma progression by sponging miR-624-5p and
inactivating the GSK-3β/β-catenin signaling pathway. Cell Death
Dis. 13(464)2022.PubMed/NCBI View Article : Google Scholar
|
51
|
Zhang CH, Liu H, Zhao WL, Zhao WX, Zhou HM
and Shao RG: G3BP1 promotes human breast cancer cell proliferation
through coordinating with GSK-3β and stabilizing β-catenin. Acta
Pharmacol Sin. 42:1900–1912. 2021.PubMed/NCBI View Article : Google Scholar
|
52
|
Mao D, Zhang X, Wang Z, Xu G and Zhang Y:
TMEM97 is transcriptionally activated by YY1 and promotes
colorectal cancer progression via the GSK-3β/β-catenin signaling
pathway. Hum Cell. 35:1535–1546. 2022.PubMed/NCBI View Article : Google Scholar
|
53
|
Li Q, Luo H, Dai FQ, Wang RT, Fan XQ, Luo
YY, Deng MS, Wang Y, Long T, Guo W, et al: SAMD9 promotes
postoperative recurrence of esophageal squamous cell carcinoma by
stimulating MYH9-Mediated GSK3β/β-Catenin signaling. Adv Sci
(Weinh). 10(e2203573)2023.PubMed/NCBI View Article : Google Scholar
|
54
|
Zhao J, Ou B, Han D, Wang P, Zong Y, Zhu
C, Liu D, Zheng M, Sun J, Feng H and Lu A: Tumor-derived CXCL5
promotes human colorectal cancer metastasis through activation of
the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways. Mol Cancer.
16(70)2017.PubMed/NCBI View Article : Google Scholar
|
55
|
Zhang Y, Li JH, Yuan QG and Yang WB:
Restraint of FAM60A has a cancer-inhibiting role in pancreatic
carcinoma via the effects on the Akt/GSK-3β/β-catenin signaling
pathway. Environ Toxicol. 37:1432–1444. 2022.PubMed/NCBI View Article : Google Scholar
|