1
|
Xu Y, Wang L, He J, Bi Y, Li M, Wang T,
Wang L, Jiang Y, Dai M, Lu J, et al: Prevalence and control of
diabetes in Chinese adults. JAMA. 310:948–959. 2013.PubMed/NCBI View Article : Google Scholar
|
2
|
Carracher AM, Marathe PH and Close KL:
International diabetes federation 2017. J Diabetes. 10:353–356.
2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Ji L, Hu D, Pan C, Weng J, Huo Y, Ma C, Mu
Y, Hao C, Ji Q, Ran X, et al: Primacy of the 3B approach to control
risk factors for cardiovascular disease in type 2 diabetes
patients. Am J Med. 126:925 e11–22. 2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Sutariya B and Saraf M: Betanin, isolated
from fruits of Opuntia elatior Mill attenuates renal fibrosis in
diabetic rats through regulating oxidative stress and TGF-β
pathway. J Ethnopharmacol. 198:432–443. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhu PJ: Renal Fibrosis and Anti-fibrosis
Treatment Research. Chinese Journal of Integrated Traditional and
Western Nephrology 114-117, 2004.
|
6
|
Zhang X, Guo K, Xia F, Zhao X, Huang Z and
Niu J: FGF23C-tail improves diabetic nephropathy by
attenuating renal fibrosis and inflammation. BMC Biotechnol.
18(33)2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Forbes JM and Cooper ME: Mechanisms of
diabetic complications. Physiol Rev. 93:137–188. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Tuttle KR, Bakris GL, Bilous RW, Chiang
JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K,
Narva AS, Navaneethan SD, et al: Diabetic kidney disease: A report
from an ADA consensus conference. Am J Kidney Dis. 64:510–533.
2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Dekkers CCJ, Gansevoort RT and Heerspink
HJL: New diabetes therapies and diabetic kidney disease
progression: The role of SGLT-2 inhibitors. Curr Diab Rep.
18(27)2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Messerli FH, Bangalore S, Bavishi C and
Rimoldi SF: Angiotensin-Converting enzyme inhibitors in
hypertension: To use or not to use? J Am Coll Cardiol.
71:1474–1482. 2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Bhandari S, Mehta S, Khwaja A, Cleland
JGF, Ives N, Brettell E, Chadburn M and Cockwell P: STOP ACEi Trial
Investigators. Renin-Angiotensin system inhibition in advanced
chronic kidney disease. N Engl J Med. 387:2021–2032.
2022.PubMed/NCBI View Article : Google Scholar
|
12
|
Li J, Liu H, Takagi S, Nitta K, Kitada M,
Srivastava SP, Takagaki Y, Kanasaki K and Koya D: Renal protective
effects of empagliflozin via inhibition of EMT and aberrant
glycolysis in proximal tubules. JCI Insight.
5(e129034)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Komers R, Oyama TT, Beard DR, Tikellis C,
Xu B, Lotspeich DF and Anderson S: Rho kinase inhibition protects
kidneys from diabetic nephropathy without reducing blood pressure.
Kidney Int. 79:432–442. 2011.PubMed/NCBI View Article : Google Scholar
|
14
|
Poursharif S, Hamza S and Braam B: Changes
in Proximal tubular reabsorption modulate microvascular regulation
via the TGF system. Int J Mol Sci. 23(11203)2022.PubMed/NCBI View Article : Google Scholar
|
15
|
Xue J, Wang L, Sun Z and Xing C: Basic
research in diabetic nephropathy health care: A study of the
renoprotective mechanism of metformin. J Med Syst.
43(266)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Shen Y, Miao N, Xu J, Gan X, Xu D, Zhou L,
Xue H, Zhang W and Lu L: Metformin prevents renal fibrosis in mice
with unilateral ureteral obstruction and inhibits Ang II-Induced
ECM production in renal fibroblasts. Int J Mol Sci.
17(146)2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Rajasekeran H, Lytvyn Y and Cherney DZ:
Sodium-glucose cotransporter 2 inhibition and cardiovascular risk
reduction in patients with type 2 diabetes: The emerging role of
natriuresis. Kidney Int. 89:524–526. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Schechter M, Jongs N, Chertow GM, Mosenzon
O, McMurray JJV, Correa-Rotter R, Rossing P, Langkilde AM, Sjostrom
CD, Toto RD, et al: Effects of dapagliflozin on hospitalizations in
patients with chronic kidney disease: A post Hoc analysis of
DAPA-CKD. Ann Intern Med. 176:59–66. 2023.PubMed/NCBI View
Article : Google Scholar
|
19
|
McEwan P, Darlington O, Miller R, McMurray
JJV, Wheeler DC, Heerspink HJL, Briggs A, Bergenheim K and Garcia
Sanchez JJ: Cost-Effectiveness of dapagliflozin as a treatment for
chronic kidney disease: A health-economic analysis of DAPA-CKD.
Clin J Am Soc Nephrol. 17:1730–1741. 2022.PubMed/NCBI View Article : Google Scholar
|
20
|
Reifsnider OS, Kansal AR, Gandhi PK,
Cragin L, Brand SB, Pfarr E, Fahrbach K and Ustyugova A:
Cost-effectiveness of empagliflozin versus canagliflozin,
dapagliflozin, or standard of care in patients with type 2 diabetes
and established cardiovascular disease. BMJ Open Diabetes Res Care.
9(e001313)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Hutter S, van Haaften WT, Hunerwadel A,
Baebler K, Herfarth N, Raselli T, Mamie C, Misselwitz B, Rogler G,
Weder B, et al: Intestinal activation of pH-Sensing Receptor OGR1
[GPR68] contributes to fibrogenesis. J Crohns Colitis.
12:1348–1358. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Lindquist JA and Mertens PR:
Myofibroblasts, regeneration or renal fibrosis-is there a decisive
hint? Nephrol Dial Transplant. 28:2678–2681. 2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Zeisberg EM, Potenta SE, Sugimoto H,
Zeisberg M and Kalluri R: Fibroblasts in kidney fibrosis emerge via
endothelial-to-mesenchymal transition. J Am Soc Nephrol.
19:2282–2287. 2008.PubMed/NCBI View Article : Google Scholar
|
24
|
Cho JG, Lee A, Chang W, Lee MS and Kim J:
Endothelial to mesenchymal transition represents a key link in the
interaction between inflammation and endothelial dysfunction. Front
Immunol. 9(294)2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Passerini AG, Milsted A and Rittgers SE:
Shear stress magnitude and directionality modulate growth factor
gene expression in preconditioned vascular endothelial cells. J
Vasc Surg. 37:182–190. 2003.PubMed/NCBI View Article : Google Scholar
|
26
|
Lu Y, Liu S, Zhang S, Cai G, Jiang H, Su
H, Li X, Hong Q, Zhang X and Chen X: Tissue inhibitor of
metalloproteinase-1 promotes NIH3T3 fibroblast proliferation by
activating p-Akt and cell cycle progression. Mol Cells. 31:225–230.
2011.PubMed/NCBI View Article : Google Scholar
|
27
|
Chen Y, Zou H, Lu H, Xiang H and Chen S:
Research progress of endothelial-mesenchymal transition in diabetic
kidney disease. J Cell Mol Med. 26:3313–3322. 2022.PubMed/NCBI View Article : Google Scholar
|
28
|
Wahab NAA, Giribabu N, Kilari EK and
Salleh N: Abietic acid ameliorates nephropathy progression via
mitigating renal oxidative stress, inflammation, fibrosis and
apoptosis in high fat diet and low dose streptozotocin-induced
diabetic rats. Phytomedicine. 107(154464)2022.PubMed/NCBI View Article : Google Scholar
|
29
|
Ilzecka J, Stelmasiak Z and Dobosz B:
Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with
amyotrophic lateral sclerosis. Cytokine. 20:239–243.
2002.PubMed/NCBI View Article : Google Scholar
|
30
|
Liu CL, Yan L, Cai KR, Sun K, Qi Y, Han
YL, Zhang XD and Sun XD: Effects of soybean isoflavones on
Wnt/β-catenin and the TGF-β1 signaling pathway in renal tissue of
type 2 diabetic rats. J Biol Regul Homeost Agents. 32:455–464.
2018.PubMed/NCBI
|
31
|
Sun M, Zhou W, Yao F, Song J, Xu Y, Deng
Z, Diao H and Li S: MicroRNA-302b mitigates renal fibrosis via
inhibiting TGF-β/Smad pathway activation. Braz J Med Biol Res.
54(e9206)2021.PubMed/NCBI View Article : Google Scholar
|
32
|
Sun SF, Zhao TT, Zhang HJ, Huang XR, Zhang
WK, Zhang L, Yan MH, Dong X, Wang H, Wen YM, et al: Renoprotective
effect of berberine on type 2 diabetic nephropathy in rats. Clin
Exp Pharmacol Physiol. 42:662–670. 2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Li Q, Ye F, Shi Y, Zhang L, Wang W, Tu Z,
Qiu J, Wang J, Li S, Bu H and Li Y: Nuclear translocation of SMAD3
may enhance the TGF-beta/SMADS pathway in high glucose
circumstances. Transplant Proc. 38:2158–2160. 2006.PubMed/NCBI View Article : Google Scholar
|
34
|
Liu L, Wang Y, Yan R, Li S, Shi M, Xiao Y
and Guo B: Oxymatrine inhibits renal tubular EMT induced by high
glucose via upregulation of SnoN and inhibition of TGF-β1/smad
signaling pathway. PLoS One. 11(e0151986)2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Zhang Q, Liu X, Sullivan MA, Shi C and
Deng B: Protective Effect of Yi Shen Pai Du formula against
diabetic kidney injury via inhibition of oxidative stress,
inflammation, and epithelial-to-mesenchymal transition in db/db
mice. Oxid Med Cell Longev. 2021(7958021)2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Mou X, Zhou DY, Zhou D, Liu K, Chen LJ and
Liu WH: A bioinformatics and network pharmacology approach to the
mechanisms of action of Shenxiao decoction for the treatment of
diabetic nephropathy. Phytomedicine. 69(153192)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Gan C, Zhang Q, Liu H, Wang G, Wang L, Li
Y, Tan Z, Yin W, Yao Y, Xie Y, et al: Nifuroxazide ameliorates
pulmonary fibrosis by blocking myofibroblast genesis: A drug
repurposing study. Respir Res. 23(32)2022.PubMed/NCBI View Article : Google Scholar
|
38
|
Jaikumkao K, Pongchaidecha A, Chueakula N,
Thongnak LO, Wanchai K, Chatsudthipong V, Chattipakorn N and
Lungkaphin A: Dapagliflozin, a sodium-glucose co-transporter-2
inhibitor, slows the progression of renal complications through the
suppression of renal inflammation, endoplasmic reticulum stress and
apoptosis in prediabetic rats. Diabetes Obes Metab. 20:2617–2626.
2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Oraby MA, El-Yamany MF, Safar MM, Assaf N
and Ghoneim HA: Dapagliflozin attenuates early markers of diabetic
nephropathy in fructose-streptozotocin-induced diabetes in rats.
Biomed Pharmacother. 109:910–920. 2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Jihua C, Cai C, Xubin B and Yue Y: Effects
of Dexmedetomidine on the RhoA/ROCK/Nox4 signaling pathway in renal
fibrosis of diabetic rats. Open Med (Wars). 14:890–898.
2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Liu WH, Liu SM, Lin SF and Huang HQ: Role
of berberine in fibronectin expression via S1P2-MAPK signaling
pathway in diabetic nephropathy. Chinese Pharmacological Bulletin.
29:723–728. 2013.
|
42
|
Tripathi BK and Srivastava AK: Diabetes
mellitus: Complications and therapeutics. Med Sci Monit.
12:RA130–RA147. 2006.PubMed/NCBI
|
43
|
Zhang PH, Chen ZW, Lv D, Xu YY, Gu WL,
Zhang XH, Le YL, Zhu HH and Zhu YM: Increased risk of cancer in
patients with type 2 diabetes mellitus: A retrospective cohort
study in China. BMC Public Health. 12(567)2012.PubMed/NCBI View Article : Google Scholar
|
44
|
Ou YL, Lee MY, Lin IT, Wen WL, Hsu WH and
Chen SC: Obesity-related indices are associated with albuminuria
and advanced kidney disease in type 2 diabetes mellitus. Ren Fail.
43:1250–1258. 2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Tokunaga T, Fujiwara Y, Matsushita M,
Suzaki T and Suzaki E: Glomerular hypertrophy and hyperfiltration
in obesity-related diabetic (ob/ob) mouse. Analytical and
quantitative cytology and histology. 39:223–230. 2017.
|
46
|
Yuan XL and Wang SJ: Clinical efficacy of
dapagliflozin in patients with type 2 diabetic kidney disease.
Henan Medical Research. 29:1969–1971. 2020.
|
47
|
Zhang XR, Fu XJ, Zhu DS, Zhang CZ, Hou S,
Li M and Yang XH: Salidroside-regulated lipid metabolism with
down-regulation of miR-370 in type 2 diabetic mice. Eur J
Pharmacol. 779:46–52. 2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Wang CH, Punde TH, Huang CD, Chou PC,
Huang TT, Wu WH, Liu CH, Chung KF and Kuo HP: Fibrocyte trafficking
in patients with chronic obstructive asthma and during an acute
asthma exacerbation. J Allergy Clin Immunol. 135:1154–1162.e1-5.
2015.PubMed/NCBI View Article : Google Scholar
|
49
|
Tian C, Wang Y, Chang H, Li J and La X:
Spleen-Kidney supplementing formula alleviates renal fibrosis in
diabetic rats via TGF-β1-miR-21-PTEN signaling pathway. Evid Based
Complement Alternat Med. 2018(3824357)2018.PubMed/NCBI View Article : Google Scholar
|
50
|
Huang H, You Y, Lin X, Tang C, Gu X, Huang
M, Qin Y, Tan J and Huang F: Inhibition of TRPC6 signal pathway
alleviates podocyte injury induced by TGF-β1. Cell Physiol Biochem.
41:163–172. 2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Loeffler I, Hopfer U, Koczan D and Wolf G:
Type VIII collagen modulates TGF-β1-induced proliferation of
mesangial cells. J Am Soc Nephrol. 22:649–663. 2011.PubMed/NCBI View Article : Google Scholar
|
52
|
Overstreet JM, Samarakoon R, Meldrum KK
and Higgins PJ: Redox control of p53 in the transcriptional
regulation of TGF-β1 target genes through SMAD cooperativity. Cell
Signal. 26:1427–1436. 2014.PubMed/NCBI View Article : Google Scholar
|
53
|
Kim D, Lee AS, Jung YJ, Yang KH, Lee S,
Park SK, Kim W and Kang KP: Tamoxifen ameliorates renal
tubulointerstitial fibrosis by modulation of estrogen receptor
α-mediated transforming growth factor-β1/Smad signaling pathway.
Nephrol Dial Transplant. 29:2043–2053. 2014.PubMed/NCBI View Article : Google Scholar
|
54
|
Samarakoon R, Overstreet JM and Higgins
PJ: TGF-β signaling in tissue fibrosis: Redox controls, target
genes and therapeutic opportunities. Cell Signal. 25:264–268.
2013.PubMed/NCBI View Article : Google Scholar
|
55
|
Liu S, Yu N, Zhang XL, Chen XQ and Tang
LQ: The regulation of berberine on the imbalance of TGF-β1/SnoN
expression in renal tissues of rats with early diabetic nephropathy
and the regulation of Smad signaling pathway. China Journal of
Chinese Material Madica. 37:3604–3610. 2012.
|
56
|
Ka SM, Yeh YC, Huang XR, Chao TK, Hung YJ,
Yu CP, Lin TJ, Wu CC, Lan HY and Chen A: Kidney-targeting Smad7
gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear
factor kappaB (NF-κB) signalling pathways, and improves diabetic
nephropathy in mice. Diabetologia. 55:509–519. 2012.PubMed/NCBI View Article : Google Scholar
|
57
|
Chatziantoniou C and Dussaule JC: Insights
into the mechanisms of renal fibrosis: Is it possible to achieve
regression? Am J Physiol Renal Physiol. 289:F227–F234.
2005.PubMed/NCBI View Article : Google Scholar
|