1
|
Volpe VO, Garcia-Manero G and Komrokji RS:
Myelodysplastic Syndromes: A new decade. Clin Lymphoma Myeloma
Leuk. 22:1–16. 2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Montalban-Bravo G and Garcia-Manero G:
Myelodysplastic syndromes: 2018 update on diagnosis,
risk-stratification and management. Am J Hematol. 93:129–147.
2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Daher-Reyes GS, Merchan BM and Yee KWL:
Guadecitabine (SGI-110): An investigational drug for the treatment
of myelodysplastic syndrome and acute myeloid leukemia. Expert Opin
Investig Drugs. 28:835–849. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Navada SC and Silverman LR: The safety and
efficacy of rigosertib in the treatment of myelodysplastic
syndromes. Expert Rev Anticancer Ther. 16:805–810. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Haroun F, Solola SA, Nassereddine S and
Tabbara I: PD-1 signaling and inhibition in AML and MDS. Ann
Hematol. 96:1441–1448. 2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Yang X, Ma L, Zhang X, Huang L and Wei J:
Targeting PD-1/PD-L1 pathway in myelodysplastic syndromes and acute
myeloid leukemia Exp Hematol. Oncol. 11(11)2022.PubMed/NCBI View Article : Google Scholar
|
7
|
Chien KS, Class CA, Montalban-Bravo G, Wei
Y, Sasaki K, Naqvi K, Ganan-Gomez I, Yang H, Soltysiak KA,
Kanagal-Shamanna R, et al: LILRB4 expression in chronic
myelomonocytic leukemia and myelodysplastic syndrome based on
response to hypomethylating agents. Leuk Lymphoma. 61:1493–1499.
2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Scott LJ: Azacitidine: A review in
myelodysplastic syndromes and acute myeloid leukaemia. Drugs.
76:889–900. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Salim O, Toptas T, Avsar E, Yucel OK,
Ozturk E, Ferhanoglu B, Geduk A, Mehtap O, Tombak A, Tiftik EN, et
al: Azacitidine versus decitabine in patients with refractory
anemia with excess blast-Results of multicenter study. Leuk Res.
45:82–89. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
de Lima M, Roboz GJ, Platzbecker U,
Craddock C and Ossenkoppele G: AML and the art of remission
maintenance. Blood Rev. 49(100829)2021.PubMed/NCBI View Article : Google Scholar
|
11
|
DiNardo CD, Jonas BA, Pullarkat V, Thirman
MJ, Garcia JS, Wei AH, Konopleva M, Döhner H, Letai A, Fenaux P, et
al: Azacitidine and venetoclax in previously untreated acute
myeloid leukemia. N Engl J Med. 383:617–629. 2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Kumar S, Kaufman JL, Gasparetto C, Mikhael
J, Vij R, Pegourie B, Benboubker L, Facon T, Amiot M, Moreau P, et
al: Efficacy of venetoclax as targeted therapy for
relapsed/refractory t(11;14) multiple myeloma. Blood.
130:2401–2409. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Sidiqi MH, Al Saleh AS, Kumar SK, Leung N,
Jevremovic D, Muchtar E, Gonsalves WI, Kourelis TV, Warsame R,
Buadi FK, et al: Venetoclax for the treatment of multiple myeloma:
Outcomes outside of clinical trials. Am J Hematol. 96:1131–1136.
2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Lagadinou ED, Sach A, Callahan K, Rossi
RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O'Dwyer
KM, et al: BCL-2 inhibition targets oxidative phosphorylation and
selectively eradicates quiescent human leukemia stem cells. Cell
Stem Cell. 12:329–341. 2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Lucantoni F, Dussmann H, Llorente-Folch I
and Prehn JHM: BCL2 and BCL(X)L selective inhibitors decrease
mitochondrial ATP production in breast cancer cells and are
synthetically lethal when combined with 2-deoxy-D-glucose.
Oncotarget. 9:26046–26063. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Sharon D, Cathelin S, Mirali S, Di Trani
JM, Yanofsky DJ, Keon KA, Rubinstein JL, Schimmer AD, Ketela T and
Chan SM: Inhibition of mitochondrial translation overcomes
venetoclax resistance in AML through activation of the integrated
stress response. Sci Transl Med. 11(eaax2863)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Guieze R, Liu VM, Rosebrock D, Jourdain
AA, Hernandez-Sanchez M, Martinez Zurita A, Sun J, Ten Hacken E,
Baranowski K, Thompson PA, et al: Mitochondrial Reprogramming
Underlies Resistance to BCL-2 inhibition in lymphoid malignancies.
Cancer Cell. 36:369–384 e13. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Roca-Portoles A, Rodriguez-Blanco G,
Sumpton D, Cloix C, Mullin M, Mackay GM, O'Neill K, Lemgruber L,
Luo X and Tait SWG: Venetoclax causes metabolic reprogramming
independent of BCL-2 inhibition. Cell Death Dis.
11(616)2020.PubMed/NCBI View Article : Google Scholar
|
19
|
DiNardo CD, Pratz K, Pullarkat V, Jonas
BA, Arellano M, Becker PS, Frankfurt O, Konopleva M, Wei AH,
Kantarjian HM, et al: Venetoclax combined with decitabine or
azacitidine in treatment-naive, elderly patients with acute myeloid
leukemia. Blood. 133:7–17. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Phillips DC, Xiao Y, Lam LT, Litvinovich
E, Roberts-Rapp L, Souers AJ and Leverson JD: Loss in MCL-1
function sensitizes non-Hodgkin's lymphoma cell lines to the
BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J.
5(e368)2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Hwang S, Yang S, Kim M, Hong Y, Kim B, Lee
EK and Jeong SM: Mitochondrial glutamine metabolism regulates
sensitivity of cancer cells after chemotherapy via amphiregulin.
Cell Death Discov. 7(395)2021.PubMed/NCBI View Article : Google Scholar
|
22
|
Jeong SM, Xiao C, Finley LW, Lahusen T,
Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ, et al:
SIRT4 has tumor-suppressive activity and regulates the cellular
metabolic response to DNA damage by inhibiting mitochondrial
glutamine metabolism. Cancer Cell. 23:450–463. 2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Gerard-Monnier D and Chaudiere J:
Metabolism and antioxidant function of glutathione. Pathol Biol
(Paris). 44:77–85. 1996.PubMed/NCBI(In French).
|
24
|
Lertratanangkoon K, Wu CJ, Savaraj N and
Thomas ML: Alterations of DNA methylation by glutathione depletion.
Cancer Lett. 120:149–156. 1997.PubMed/NCBI View Article : Google Scholar
|
25
|
Hitchler MJ and Domann FE: An epigenetic
perspective on the free radical theory of development. Free Radic
Biol Med. 43:1023–1036. 2007.PubMed/NCBI View Article : Google Scholar
|
26
|
Yoo HC, Yu YC, Sung Y and Han JM:
Glutamine reliance in cell metabolism. Exp Mol Med. 52:1496–1516.
2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Lu SC: Glutathione synthesis. Biochim
Biophys Acta. 1830:3143–3153. 2013.PubMed/NCBI View Article : Google Scholar
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
29
|
Nakagawa T and Matozaki S: The SKM-1
leukemic cell line established from a patient with progression to
myelomonocytic leukemia in myelodysplastic syndrome
(MDS)-contribution to better understanding of MDS. Leuk Lymphoma.
17:335–339. 1995.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhou X, Kuang Y, Liang S and Wang L:
Metformin inhibits cell proliferation in SKM-1 cells via
AMPK-mediated cell cycle arrest. J Pharmacol Sci. 141:146–152.
2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Bennett JM, Catovsky D, Daniel MT,
Flandrin G, Galton DA, Gralnick HR and Sultan C: Proposals for the
classification of the myelodysplastic syndromes. Br J Haematol.
51:189–199. 1982.PubMed/NCBI
|
32
|
Nakagawa T, Saitoh S, Imoto S, Itoh M,
Tsutsumi M, Hikiji K, Nakao Y and Fujita T: Loss of multiple point
mutations of RAS genes associated with acquisition of chromosomal
abnormalities during disease progression in myelodysplastic
syndrome. Br J Haematol. 77:250–252. 1991.PubMed/NCBI View Article : Google Scholar
|
33
|
Chen X, Glytsou C, Zhou H, Narang S, Reyna
DE, Lopez A, Sakellaropoulos T, Gong Y, Kloetgen A, Yap YS, et al:
Targeting mitochondrial structure sensitizes acute myeloid leukemia
to venetoclax treatment. Cancer Discov. 9:890–909. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Guo J, Zhang R, Yang Z, Duan Z, Yin D and
Zhou Y: Biological roles and therapeutic applications of IDH2
mutations in human cancer. Front Oncol. 11(644857)2021.PubMed/NCBI View Article : Google Scholar
|
35
|
Schulte ML, Fu A, Zhao P, Li J, Geng L,
Smith ST, Kondo J, Coffey RJ, Johnson MO, Rathmell JC, et al:
Pharmacological blockade of ASCT2-dependent glutamine transport
leads to antitumor efficacy in preclinical models. Nat Med.
24:194–202. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Choi SH, Byun HM, Kwan JM, Issa JP and
Yang AS: Hydroxycarbamide in combination with azacitidine or
decitabine is antagonistic on DNA methylation inhibition. Br J
Haematol. 138:616–623. 2007.PubMed/NCBI View Article : Google Scholar
|
37
|
Momparler RL: Pharmacology of
5-Aza-2'-deoxycytidine (decitabine). Semin Hematol. 42 (Suppl
2):S9–S16. 2005.PubMed/NCBI View Article : Google Scholar
|
38
|
Jin L, Alesi GN and Kang S: Glutaminolysis
as a target for cancer therapy. Oncogene. 35:3619–3625.
2016.PubMed/NCBI View Article : Google Scholar
|
39
|
Bartenstein M and Deeg HJ: Hematopoietic
stem cell transplantation for MDS. Hematol Oncol Clin North Am.
24:407–422. 2010.PubMed/NCBI View Article : Google Scholar
|
40
|
DiNardo CD, Pratz KW, Letai A, Jonas BA,
Wei AH, Thirman M, Arellano M, Frattini MG, Kantarjian H, Popovic
R, et al: Safety and preliminary efficacy of venetoclax with
decitabine or azacitidine in elderly patients with previously
untreated acute myeloid leukaemia: A non-randomised, open-label,
phase 1b study. Lancet Oncol. 19:216–228. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Tsao T, Shi Y, Kornblau S, Lu H, Konoplev
S, Antony A, Ruvolo V, Qiu YH, Zhang N, Coombes KR, et al:
Concomitant inhibition of DNA methyltransferase and BCL-2 protein
function synergistically induce mitochondrial apoptosis in acute
myelogenous leukemia cells. Ann Hematol. 91:1861–1870.
2012.PubMed/NCBI View Article : Google Scholar
|
42
|
Pan R, Hogdal LJ, Benito JM, Bucci D, Han
L, Borthakur G, Cortes J, DeAngelo DJ, Debose L, Mu H, et al:
Selective BCL-2 inhibition by ABT-199 causes on-target cell death
in acute myeloid leukemia. Cancer Discov. 4:362–375.
2014.PubMed/NCBI View Article : Google Scholar
|
43
|
Bogenberger JM, Delman D, Hansen N, Valdez
R, Fauble V, Mesa RA and Tibes R: Ex vivo activity of BCL-2 family
inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in
myeloid malignancies. Leuk Lymphoma. 56:226–229. 2015.PubMed/NCBI View Article : Google Scholar
|
44
|
DiNardo CD, Rausch CR, Benton C, Kadia T,
Jain N, Pemmaraju N, Daver N, Covert W, Marx KR, Mace M, et al:
Clinical experience with the BCL2-inhibitor venetoclax in
combination therapy for relapsed and refractory acute myeloid
leukemia and related myeloid malignancies. Am J Hematol.
93:401–407. 2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Deeks ED: Venetoclax: First global
approval. Drugs. 76:979–987. 2016.PubMed/NCBI View Article : Google Scholar
|
46
|
Yang TT, Song XL, Zhao YM, Ye BD, Luo Y,
Xiao HW, Chen Y, Fu HR, Yu J, Liu LZ, et al: Outcome after
allogeneic hematopoietic stem cell transplantation following
Venetoclax-based therapy among AML and MDS patients. Ann Hematol.
101:2731–2741. 2022.PubMed/NCBI View Article : Google Scholar
|
47
|
Masetti R, Baccelli F, Leardini D,
Gottardi F, Vendemini F, Di Gangi A, Becilli M, Lodi M, Tumino M,
Vinci L, et al: Venetoclax-based therapies in pediatric advanced
MDS and relapsed/refractory AML: A multicenter retrospective
analysis. Blood Adv. 7:4366–4370. 2023.PubMed/NCBI View Article : Google Scholar
|
48
|
Chen Z, Zhen S, Zhang T, Shen Y, Pang A,
Yang D, Zhang R, Ma Q, He Y, Wei J, et al: Venetoclax plus
hypomethylating agents versus intensive chemotherapy for
hematological relapse of myeloid malignancies after allo-HSCT.
Front Oncol. 13(1137175)2023.PubMed/NCBI View Article : Google Scholar
|
49
|
Chen X, Liu ZY, Zhang RL, Zhai WH, Ma QL,
Pang AM, Yang DL, He Y, Wei JL, Feng SZ, et al: Efficacy and safety
of Venetoclax in the treatment of 25 patients with recurrent
hematologic malignancies after an allogeneic hematopoietic stem
cell transplantation. Zhonghua Xue Ye Xue Za Zhi. 43:542–549.
2022.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
50
|
Jilg S, Reidel V, Muller-Thomas C, Konig
J, Schauwecker J, Hockendorf U, Huberle C, Gorka O, Schmidt B,
Burgkart R, et al: Blockade of BCL-2 proteins efficiently induces
apoptosis in progenitor cells of high-risk myelodysplastic
syndromes patients. Leukemia. 30:112–123. 2016.PubMed/NCBI View Article : Google Scholar
|
51
|
Parker JE, Mufti GJ, Rasool F, Mijovic A,
Devereux S and Pagliuca A: The role of apoptosis, proliferation,
and the Bcl-2-related proteins in the myelodysplastic syndromes and
acute myeloid leukemia secondary to MDS. Blood. 96:3932–3938.
2000.PubMed/NCBI
|
52
|
Yang X, Xia R, Yue C, Zhai W, Du W, Yang
Q, Cao H, Chen X, Obando D, Zhu Y, et al: ATF4 Regulates CD4(+) T
cell immune responses through metabolic reprogramming. Cell Rep.
23:1754–1766. 2018.PubMed/NCBI View Article : Google Scholar
|
53
|
Tang X, Lucas JE, Chen JL, LaMonte G, Wu
J, Wang MC, Koumenis C and Chi JT: Functional interaction between
responses to lactic acidosis and hypoxia regulates genomic
transcriptional outputs. Cancer Res. 72:491–502. 2012.PubMed/NCBI View Article : Google Scholar
|
54
|
Verginadis II, Avgousti H, Monslow J,
Skoufos G, Chinga F, Kim K, Leli NM, Karagounis IV, Bell BI,
Velalopoulou A, et al: A stromal integrated stress response
activates perivascular cancer-associated fibroblasts to drive
angiogenesis and tumour progression. Nat Cell Biol. 24:940–953.
2022.PubMed/NCBI View Article : Google Scholar
|
55
|
Yang H, Ye D, Guan KL and Xiong Y: IDH1
and IDH2 mutations in tumorigenesis: Mechanistic insights and
clinical perspectives. Clin Cancer Res. 18:5562–5571.
2012.PubMed/NCBI View Article : Google Scholar
|
56
|
Mondesir J, Willekens C, Touat M and de
Botton S: IDH1 and IDH2 mutations as novel therapeutic targets:
Current perspectives. J Blood Med. 7:171–180. 2016.PubMed/NCBI View Article : Google Scholar
|
57
|
Yan H, Parsons DW, Jin G, McLendon R,
Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ,
et al: IDH1 and IDH2 mutations in gliomas. N Engl J Med.
360:765–773. 2009.PubMed/NCBI View Article : Google Scholar
|
58
|
Borger DR, Tanabe KK, Fan KC, Lopez HU,
Fantin VR, Straley KS, Schenkein DP, Hezel AF, Ancukiewicz M,
Liebman HM, et al: Frequent mutation of isocitrate dehydrogenase
(IDH)1 and IDH2 in cholangiocarcinoma identified through
broad-based tumor genotyping. Oncologist. 17:72–79. 2012.PubMed/NCBI View Article : Google Scholar
|
59
|
Ohba S and Hirose Y: Association between
mutant IDHs and tumorigenesis in gliomas. Med Mol Morphol.
51:194–198. 2018.PubMed/NCBI View Article : Google Scholar
|
60
|
Pardanani A, Patnaik MM, Lasho TL, Mai M,
Knudson RA, Finke C, Ketterling RP, McClure RF and Tefferi A:
Recurrent IDH mutations in high-risk myelodysplastic syndrome or
acute myeloid leukemia with isolated del(5q). Leukemia.
24:1370–1372. 2010.PubMed/NCBI View Article : Google Scholar
|
61
|
Molenaar RJ, Coelen RJS, Khurshed M, Roos
E, Caan MWA, van Linde ME, Kouwenhoven M, Bramer JAM, Bovée JVMG,
Mathôt RA, et al: Study protocol of a phase IB/II clinical trial of
metformin and chloroquine in patients with IDH1-mutated or
IDH2-mutated solid tumours. BMJ Open. 7(e014961)2017.PubMed/NCBI View Article : Google Scholar
|
62
|
Wahl DR, Dresser J, Wilder-Romans K,
Parsels JD, Zhao SG, Davis M, Zhao L, Kachman M, Wernisch S, Burant
CF, et al: Glioblastoma Therapy Can Be Augmented by Targeting
IDH1-Mediated NADPH Biosynthesis. Cancer Res. 77:960–970.
2017.PubMed/NCBI View Article : Google Scholar
|
63
|
Mohrenz IV, Antonietti P, Pusch S, Capper
D, Balss J, Voigt S, Weissert S, Mukrowsky A, Frank J, Senft C, et
al: Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells
to BCNU-induced oxidative stress and cell death. Apoptosis.
18:1416–1425. 2013.PubMed/NCBI View Article : Google Scholar
|
64
|
Zarei M, Lal S, Parker SJ, Nevler A,
Vaziri-Gohar A, Dukleska K, Mambelli-Lisboa NC, Moffat C, Blanco
FF, Chand SNJ, et al: Posttranscriptional Upregulation of IDH1 by
HuR establishes a powerful survival phenotype in pancreatic cancer
cells. Cancer Res. 77:4460–4471. 2017.PubMed/NCBI View Article : Google Scholar
|
65
|
Li J, He Y, Tan Z, Lu J, Li L, Song X, Shi
F, Xie L, You S, Luo X, et al: Wild-type IDH2 promotes the Warburg
effect and tumor growth through HIF1α in lung cancer. Theranostics.
8:4050–4061. 2018.PubMed/NCBI View Article : Google Scholar
|
66
|
Voehringer DW: BCL-2 and glutathione:
Alterations in cellular redox state that regulate apoptosis
sensitivity. Free Radic Biol Med. 27:945–950. 1999.PubMed/NCBI View Article : Google Scholar
|
67
|
Atzori L, Dypbukt JM, Sundqvist K,
Cotgreave I, Edman CC, Moldeus P and Grafström RC:
Growth-associated modifications of low-molecular-weight thiols and
protein sulfhydryls in human bronchial fibroblasts. J Cell Physiol.
143:165–171. 1990.PubMed/NCBI View Article : Google Scholar
|
68
|
Davies KJ: The broad spectrum of responses
to oxidants in proliferating cells: A new paradigm for oxidative
stress. IUBMB Life. 48:41–47. 1999.PubMed/NCBI View Article : Google Scholar
|
69
|
Menon SG, Sarsour EH, Spitz DR,
Higashikubo R, Sturm M, Zhang H and Goswami PC: Redox regulation of
the G1 to S phase transition in the mouse embryo fibroblast cell
cycle. Cancer Res. 63:2109–2117. 2003.PubMed/NCBI
|
70
|
Markovic J, Borras C, Ortega A, Sastre J,
Vina J and Pallardo FV: Glutathione is recruited into the nucleus
in early phases of cell proliferation. J Biol Chem.
282:20416–20424. 2007.PubMed/NCBI View Article : Google Scholar
|
71
|
Circu ML and Aw TY: Glutathione and
modulation of cell apoptosis. Biochim Biophys Acta. 1823:1767–1777.
2012.PubMed/NCBI View Article : Google Scholar
|
72
|
Silva MM, Rocha CRR, Kinker GS, Pelegrini
AL and Menck CFM: The balance between NRF2/GSH antioxidant mediated
pathway and DNA repair modulates cisplatin resistance in lung
cancer cells. Sci Rep. 9(17639)2019.PubMed/NCBI View Article : Google Scholar
|
73
|
Zou M, Hu X, Xu B, Tong T, Jing Y, Xi L,
Zhou W, Lu J, Wang X, Yang X and Liao F: Glutathione S-transferase
isozyme alpha 1 is predominantly involved in the cisplatin
resistance of common types of solid cancer. Oncol Rep. 41:989–998.
2019.PubMed/NCBI View Article : Google Scholar
|
74
|
Xu Y, Han X, Li Y, Min H, Zhao X, Zhang Y,
Qi Y, Shi J, Qi S, Bao Y and Nie G: Sulforaphane mediates
glutathione depletion via polymeric nanoparticles to restore
cisplatin chemosensitivity. ACS Nano. 13:13445–13455.
2019.PubMed/NCBI View Article : Google Scholar
|
75
|
Ling X, Chen X, Riddell IA, Tao W, Wang J,
Hollett G, Lippard SJ, Farokhzad OC, Shi J and Wu J:
Glutathione-Scavenging Poly(disulfide amide) nanoparticles for the
effective delivery of Pt(IV) prodrugs and reversal of cisplatin
resistance. Nano Lett. 18:4618–4625. 2018.PubMed/NCBI View Article : Google Scholar
|