Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review)
- Authors:
- Yan Lin
- Xiaofeng Jin
-
Affiliations: Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China - Published online on: November 24, 2023 https://doi.org/10.3892/etm.2023.12321
- Article Number: 33
-
Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A and Bray F: Cancer statistics for the year 2020: An overview. Int J Cancer: Apr 5, 2021 (Epub ahead of print). doi: 10.1002/ijc.33588. | |
Álvarez Múgica M and Jalón Monzón A: Tissue biomarkers in prostate cancer. Arch Esp Urol. 75:185–194. 2022.PubMed/NCBI(In Spanish). | |
Plata Bello A, Tamayo Jover MA, Gutierrez Nicolas F, Acosta López S, Concepción Masip T and Plata Bello J: Biomarkers for characterization and therapeutic orientation in castration-resistant prostate cancer. Arch Esp Urol. 75:195–202. 2022.PubMed/NCBI(In English, Spanish). | |
Evans AJ: Treatment effects in prostate cancer. Mod Pathol. 31 (Suppl 1):S110–S121. 2018.PubMed/NCBI View Article : Google Scholar | |
Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG and Williams SG: Prostate cancer. Lancet. 398:1075–1090. 2021.PubMed/NCBI View Article : Google Scholar | |
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. 2012.PubMed/NCBI View Article : Google Scholar | |
Teo MY, Rathkopf DE and Kantoff P: Treatment of advanced prostate cancer. Annu Rev Med. 70:479–499. 2019.PubMed/NCBI View Article : Google Scholar | |
Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, et al: DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 373:1697–1708. 2015.PubMed/NCBI View Article : Google Scholar | |
Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, et al: Inherited DNA-Repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 375:443–453. 2016.PubMed/NCBI View Article : Google Scholar | |
Gatti M, Imhof R, Huang Q, Baudis M and Altmeyer M: The ubiquitin ligase TRIP12 limits PARP1 trapping and constrains PARP inhibitor efficiency. Cell Rep. 32(107985)2020.PubMed/NCBI View Article : Google Scholar | |
Jin X, Qing S, Li Q, Zhuang H, Shen L, Li J, Qi H, Lin T, Lin Z, Wang J, et al: Prostate cancer-associated SPOP mutations lead to genomic instability through disruption of the SPOP-HIPK2 axis. Nucleic Acids Res. 49:6788–6803. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Cao X, Wang J, Li Q, Zhao Y and Jin X: LZTR1: A promising adaptor of the CUL3 family. Oncol Lett. 22(564)2021.PubMed/NCBI View Article : Google Scholar | |
Zhai F, Li J, Ye M and Jin X: The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene. 832(146562)2022.PubMed/NCBI View Article : Google Scholar | |
Lindahl T and Barnes DE: Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65:127–133. 2000.PubMed/NCBI View Article : Google Scholar | |
Tubbs A and Nussenzweig A: Endogenous DNA damage as a source of genomic instability in cancer. Cell. 168:644–656. 2017.PubMed/NCBI View Article : Google Scholar | |
Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009.PubMed/NCBI View Article : Google Scholar | |
Lord CJ and Ashworth A: The DNA damage response and cancer therapy. Nature. 481:287–294. 2012.PubMed/NCBI View Article : Google Scholar | |
Chou WC, Wang HC, Wong FH, Ding SL, Wu PE, Shieh SY and Shen CY: Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J. 27:3140–3150. 2008.PubMed/NCBI View Article : Google Scholar | |
Iyer RR and Pluciennik A: DNA Mismatch repair and its role in Huntington's disease. J Huntingtons Dis. 10:75–94. 2021.PubMed/NCBI View Article : Google Scholar | |
Li Z, Pearlman AH and Hsieh P: DNA mismatch repair and the DNA damage response. DNA Repair (Amst). 38:94–101. 2016.PubMed/NCBI View Article : Google Scholar | |
Scully R, Panday A, Elango R and Willis NA: DNA double-strand Break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 20:698–714. 2019.PubMed/NCBI View Article : Google Scholar | |
van Wilpe S, Tolmeijer SH, Koornstra RHT, de Vries IJM, Gerritsen WR, Ligtenberg M and Mehra N: Homologous recombination repair deficiency and implications for tumor immunogenicity. Cancers (Basel). 13(2249)2021.PubMed/NCBI View Article : Google Scholar | |
Huselid E and Bunting SF: The regulation of homologous recombination by helicases. Genes (Basel). 11(498)2020.PubMed/NCBI View Article : Google Scholar | |
The Molecular Taxonomy of Primary Prostate Cancer. Cell. 163:1011–1025. 2015.PubMed/NCBI View Article : Google Scholar | |
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard GM, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 161:1215–1228. 2015.PubMed/NCBI View Article : Google Scholar | |
Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, Mahmud N, Dadaev T, Govindasami K, Guy M, et al: Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 31:1748–1757. 2013.PubMed/NCBI View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar | |
Wengner AM, Scholz A and Haendler B: Targeting DNA damage response in prostate and breast cancer. Int J Mol Sci. 21(8273)2020.PubMed/NCBI View Article : Google Scholar | |
Santana Dos Santos E, Lallemand F, Petitalot A, Caputo SM and Rouleau E: HRness in breast and ovarian cancers. Int J Mol Sci. 21(3850)2020.PubMed/NCBI View Article : Google Scholar | |
Söderlund Leifler K, Queseth S, Fornander T and Askmalm MS: Low expression of Ku70/80, but high expression of DNA-PKcs, predict good response to radiotherapy in early breast cancer. Int J Oncol. 37:1547–1554. 2010.PubMed/NCBI View Article : Google Scholar | |
Lui GYL, Grandori C and Kemp CJ: CDK12: An emerging therapeutic target for cancer. J Clin Pathol. 71:957–962. 2018.PubMed/NCBI View Article : Google Scholar | |
Sun J, Wang C, Zhang Y, Xu L, Fang W, Zhu Y, Zheng Y, Chen X, Xie X, Hu X, et al: Genomic signatures reveal DNA damage response deficiency in colorectal cancer brain metastases. Nat Commun. 10(3190)2019.PubMed/NCBI View Article : Google Scholar | |
Jiricny J: The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 7:335–346. 2006.PubMed/NCBI View Article : Google Scholar | |
Zhang M, Xiang S, Joo HY, Wang L, Williams KA, Liu W, Hu C, Tong D, Haakenson J, Wang C, et al: HDAC6 deacetylates and ubiquitinates MSH2 to maintain proper levels of MutSα. Mol Cell. 55:31–46. 2014.PubMed/NCBI View Article : Google Scholar | |
Staniszewska M, Iking J, Lückerath K, Hadaschik B, Herrmann K, Ferdinandus J and Fendler WP: Drug and molecular radiotherapy combinations for metastatic castration resistant prostate cancer. Nucl Med Biol. 96-97:101–111. 2021.PubMed/NCBI View Article : Google Scholar | |
Slade D: PARP and PARG inhibitors in cancer treatment. Genes Dev. 34:360–394. 2020.PubMed/NCBI View Article : Google Scholar | |
Burdak-Rothkamm S, Mansour WY and Rothkamm K: DNA damage repair deficiency in prostate cancer. Trends Cancer. 6:974–984. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang W, van Gent DC, Incrocci L, van Weerden WM and Nonnekens J: Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis. 23:24–37. 2020.PubMed/NCBI View Article : Google Scholar | |
Wu YM, Cieślik M, Lonigro RJ, Vats P, Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, et al: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 173:1770–1782.e14. 2018.PubMed/NCBI View Article : Google Scholar | |
Viswanathan SR, Ha G, Hoff AM, Wala JA, Carrot-Zhang J, Whelan CW, Haradhvala NJ, Freeman SS, Reed SC, Rhoades J, et al: Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell. 174:433–447.e19. 2018.PubMed/NCBI View Article : Google Scholar | |
Nombela P, Lozano R, Aytes A, Mateo J, Olmos D and Castro E: BRCA2 and other DDR genes in prostate cancer. Cancers (Basel). 11(352)2019.PubMed/NCBI View Article : Google Scholar | |
Fradet-Turcotte A, Sitz J, Grapton D and Orthwein A: BRCA2 functions: From DNA repair to replication fork stabilization. Endocr Relat Cancer. 23:T1–T17. 2016.PubMed/NCBI View Article : Google Scholar | |
Mesman RLS, Calleja F, Hendriks G, Morolli B, Misovic B, Devilee P, van Asperen CJ, Vrieling H and Vreeswijk MPG: The functional impact of variants of uncertain significance in BRCA2. Genet Med. 21:293–302. 2019.PubMed/NCBI View Article : Google Scholar | |
Lockett KL, Snowhite IV and Hu JJ: Nucleotide-excision repair and prostate cancer risk. Cancer Lett. 220:125–135. 2005.PubMed/NCBI View Article : Google Scholar | |
Gayther SA, de Foy KA, Harrington P, Pharoah P, Dunsmuir WD, Edwards SM, Gillett C, Ardern-Jones A, Dearnaley DP, Easton DF, et al: The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. Cancer Res. 60:4513–4518. 2000.PubMed/NCBI | |
Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, Qian C, Marks AF, Slager SL, Peterson BJ, et al: Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 72:270–280. 2003.PubMed/NCBI View Article : Google Scholar | |
Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G and Witte JS: DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 13:23–29. 2004.PubMed/NCBI View Article : Google Scholar | |
Norris AM, Woodruff RD, D'Agostino RB Jr, Clodfelter JE and Scarpinato KD: Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer. Prostate. 67:214–225. 2007.PubMed/NCBI View Article : Google Scholar | |
Sun X, Chen C, Vessella RL and Dong JT: Microsatellite instability and mismatch repair target gene mutations in cell lines and xenografts of prostate cancer. Prostate. 66:660–666. 2006.PubMed/NCBI View Article : Google Scholar | |
Martin L, Coffey M, Lawler M, Hollywood D and Marignol L: DNA mismatch repair and the transition to hormone independence in breast and prostate cancer. Cancer Lett. 291:142–149. 2010.PubMed/NCBI View Article : Google Scholar | |
Schwertman P, Bekker-Jensen S and Mailand N: Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol. 17:379–394. 2016.PubMed/NCBI View Article : Google Scholar | |
Brinkmann K, Schell M, Hoppe T and Kashkar H: Regulation of the DNA damage response by ubiquitin conjugation. Front Genet. 6(98)2015.PubMed/NCBI View Article : Google Scholar | |
Ou HL and Schumacher B: DNA damage responses and p53 in the aging process. Blood. 131:488–495. 2018.PubMed/NCBI View Article : Google Scholar | |
Li J and Kurokawa M: Regulation of MDM2 stability after DNA damage. J Cell Physiol. 230:2318–2327. 2015.PubMed/NCBI View Article : Google Scholar | |
Chan P, Möller A, Liu MC, Sceneay JE, Wong CS, Waddell N, Huang KT, Dobrovic A, Millar EK, O'Toole SA, et al: The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression. Breast Cancer Res. 13(R19)2011.PubMed/NCBI View Article : Google Scholar | |
Wang D, Ma J, Botuyan MV, Cui G, Yan Y, Ding D, Zhou Y, Krueger EW, Pei J, Wu X, et al: ATM-phosphorylated SPOP contributes to 53BP1 exclusion from chromatin during DNA replication. Sci Adv. 7(eabd9208)2021.PubMed/NCBI View Article : Google Scholar | |
Sharma A, Alswillah T, Singh K, Chatterjee P, Willard B, Venere M, Summers MK and Almasan A: USP14 regulates DNA damage repair by targeting RNF168-dependent ubiquitination. Autophagy. 14:1976–1990. 2018.PubMed/NCBI View Article : Google Scholar | |
Qu H, Liu H, Jin Y, Cui Z and Han G: HUWE1 upregulation has tumor suppressive effect in human prostate cancer cell lines through c-Myc. Biomed Pharmacother. 106:309–315. 2018.PubMed/NCBI View Article : Google Scholar | |
Gewirtz DA, Alotaibi M, Yakovlev VA and Povirk LF: Tumor cell recovery from senescence induced by radiation with PARP inhibition. Radiat Res. 186:327–332. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei W: The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 17:339–350. 2020.PubMed/NCBI View Article : Google Scholar | |
An J, Wang C, Deng Y, Yu L and Huang H: Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep. 6:657–669. 2014.PubMed/NCBI View Article : Google Scholar | |
Hjorth-Jensen K, Maya-Mendoza A, Dalgaard N, Sigurethsson JO, Bartek J, Iglesias-Gato D, Olsen JV and Flores-Morales A: SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. Nucleic Acids Res. 46:9484–9495. 2018.PubMed/NCBI View Article : Google Scholar | |
Kuwano Y, Nishida K, Akaike Y, Kurokawa K, Nishikawa T, Masuda K and Rokutan K: Homeodomain-interacting protein Kinase-2: A critical regulator of the DNA damage response and the Epigenome. Int J Mol Sci. 17(1638)2016.PubMed/NCBI View Article : Google Scholar | |
Youle RJ and Strasser A: The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 9:47–59. 2008.PubMed/NCBI View Article : Google Scholar | |
McClurg UL, Chit N, Azizyan M, Edwards J, Nabbi A, Riabowol KT, Nakjang S, McCracken SR and Robson CN: Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene. 37:4679–4691. 2018.PubMed/NCBI View Article : Google Scholar | |
Aron R, Pellegrini P, Green EW, Maddison DC, Opoku-Nsiah K, Oliveira AO, Wong JS, Daub AC, Giorgini F and Finkbeiner S: Publisher Correction: Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington's disease. Nat Commun. 9(4333)2018.PubMed/NCBI View Article : Google Scholar | |
Joo HY, Jones A, Yang C, Zhai L, Smith ADt, Zhang Z, Chandrasekharan MB, Sun ZW, Renfrow MB, Wang Y, et al: Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46. J Biol Chem. 286:7190–7201. 2011.PubMed/NCBI View Article : Google Scholar | |
Adimoolam S and Ford JM: p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA. 99:12985–12990. 2002.PubMed/NCBI View Article : Google Scholar | |
Scherer SJ, Maier SM, Seifert M, Hanselmann RG, Zang KD, Muller-Hermelink HK, Angel P, Welter C and Schartl M: p53 and c-Jun functionally synergize in the regulation of the DNA repair gene hMSH2 in response to UV. J Biol Chem. 275:37469–37473. 2000.PubMed/NCBI View Article : Google Scholar | |
Achanta G and Huang P: Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 64:6233–6239. 2004.PubMed/NCBI View Article : Google Scholar | |
Roe JS, Kim HR, Hwang IY, Cho EJ and Youn HD: Von Hippel-Lindau protein promotes Skp2 destabilization on DNA damage. Oncogene. 30:3127–3138. 2011.PubMed/NCBI View Article : Google Scholar | |
Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M and Pavletich NP: Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 408:381–386. 2000.PubMed/NCBI View Article : Google Scholar | |
Zhao H, Bauzon F, Fu H, Lu Z, Cui J, Nakayama K, Nakayama KI, Locker J and Zhu L: Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell. 24:645–659. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhao H, Lu Z, Bauzon F, Fu H, Cui J, Locker J and Zhu L: p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer. Oncogene. 36:60–70. 2017.PubMed/NCBI View Article : Google Scholar | |
Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH, Yang WL, Wang J, Egia A, Nakayama KI, et al: Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 464:374–379. 2010.PubMed/NCBI View Article : Google Scholar | |
Lu W, Liu S, Li B, Xie Y, Izban MG, Ballard BR, Sathyanarayana SA, Adunyah SE, Matusik RJ, Chen Z, et al: SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene. 36:1364–1373. 2017.PubMed/NCBI View Article : Google Scholar | |
Li B, Lu W, Yang Q, Yu X, Matusik RJ and Chen Z: Skp2 regulates androgen receptor through ubiquitin-mediated degradation independent of Akt/mTOR pathways in prostate cancer. Prostate. 74:421–432. 2014.PubMed/NCBI View Article : Google Scholar | |
Lu W, Liu S, Li B, Xie Y, Adhiambo C, Yang Q, Ballard BR, Nakayama KI, Matusik RJ and Chen Z: SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination. Oncotarget. 6:771–788. 2015.PubMed/NCBI View Article : Google Scholar | |
Arbini AA, Greco M, Yao JL, Bourne P, Marra E, Hsieh JT, di Sant'agnese PA and Moro L: Skp2 overexpression is associated with loss of BRCA2 protein in human prostate cancer. Am J Pathol. 178:2367–2376. 2011.PubMed/NCBI View Article : Google Scholar | |
Moynahan ME, Pierce AJ and Jasin M: BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell. 7:263–272. 2001.PubMed/NCBI View Article : Google Scholar | |
Wang F, Ning S, Yu B and Wang Y: USP14: Structure, function, and target inhibition. Front Pharmacol. 12(801328)2021.PubMed/NCBI View Article : Google Scholar | |
Liao Y, Liu N, Hua X, Cai J, Xia X, Wang X, Huang H and Liu J: Proteasome-associated deubiquitinase ubiquitin-specific protease 14 regulates prostate cancer proliferation by deubiquitinating and stabilizing androgen receptor. Cell Death Dis. 8(e2585)2017.PubMed/NCBI View Article : Google Scholar | |
Gao L, Zhang W, Zhang J, Liu J, Sun F, Liu H, Hu J, Wang X, Wang X, Su P, et al: KIF15-mediated stabilization of AR and AR-V7 contributes to Enzalutamide resistance in prostate cancer. Cancer Res. 81:1026–1039. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Yu C, Shao Z, Xia X, Hu T, Kong W, He X, Sun W, Deng Y and Huang H: Selective degradation of AR-V7 to overcome castration resistance of prostate cancer. Cell Death Dis. 12(857)2021.PubMed/NCBI View Article : Google Scholar | |
Geng L, Chen X, Zhang M and Luo Z: Ubiquitin-specific protease 14 promotes prostate cancer progression through deubiquitinating the transcriptional factor ATF2. Biochem Biophys Res Commun. 524:16–21. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K, Li X, Wang L, Wang J, Zhang H, et al: Autophagy regulates chromatin Ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell. 63:34–48. 2016.PubMed/NCBI View Article : Google Scholar | |
Sander B, Xu W, Eilers M, Popov N and Lorenz S: A conformational switch regulates the ubiquitin ligase HUWE1. ELife. 6(e21036)2017.PubMed/NCBI View Article : Google Scholar | |
Zhong Q, Gao W, Du F and Wang X: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 121:1085–1095. 2005.PubMed/NCBI View Article : Google Scholar | |
Gong X, Du D, Deng Y, Zhou Y, Sun L and Yuan S: The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer. Invest New Drugs. 38:515–524. 2020.PubMed/NCBI View Article : Google Scholar | |
Myant KB, Cammareri P, Hodder MC, Wills J, Von Kriegsheim A, Győrffy B, Rashid M, Polo S, Maspero E, Vaughan L, et al: HUWE1 is a critical colonic tumour suppressor gene that prevents MYC signalling, DNA damage accumulation and tumour initiation. EMBO Mol Med. 9:181–197. 2017.PubMed/NCBI View Article : Google Scholar | |
Yang D, Cheng D, Tu Q, Yang H, Sun B, Yan L, Dai H, Luo J, Mao B, Cao Y, et al: HUWE1 controls the development of non-small cell lung cancer through down-regulation of p53. Theranostics. 8:3517–3529. 2018.PubMed/NCBI View Article : Google Scholar | |
Fan L, Xu S, Zhang F, Cui X, Fazli L, Gleave M, Clark DJ, Yang A, Hussain A, Rassool F and Qi J: Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death Dis. 11(214)2020.PubMed/NCBI View Article : Google Scholar | |
Shen D, Luo J, Chen L, Ma W, Mao X, Zhang Y, Zheng J, Wang Y, Wan J, Wang S, et al: PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer. Cancer Lett. 550(215919)2022.PubMed/NCBI View Article : Google Scholar | |
Lesueur P, Lequesne J, Grellard JM, Dugué A, Coquan E, Brachet PE, Geffrelot J, Kao W, Emery E, Berro DH, et al: Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol. BMC cancer. 19(198)2019.PubMed/NCBI View Article : Google Scholar | |
D'Andrea AD: Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 71:172–176. 2018.PubMed/NCBI View Article : Google Scholar | |
Messina C, Cattrini C, Soldato D, Vallome G, Caffo O, Castro E, Olmos D, Boccardo F and Zanardi E: BRCA mutations in prostate cancer: Prognostic and predictive implications. J Oncol. 2020(4986365)2020.PubMed/NCBI View Article : Google Scholar | |
de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, et al: Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 382:2091–2102. 2020.PubMed/NCBI View Article : Google Scholar | |
Wu C, Peng S, Pilie PG, Geng C, Park S, Manyam GC, Lu Y, Yang G, Tang Z, Kondraganti S, et al: PARP and CDK4/6 inhibitor combination therapy induces apoptosis and suppresses neuroendocrine differentiation in prostate cancer. Mol Cancer Ther. 20:1680–1691. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhou S, Dai Z, Wang L, Gao X, Yang L, Wang Z, Wang Q and Liu Z: MET inhibition enhances PARP inhibitor efficacy in castration-resistant prostate cancer by suppressing the ATM/ATR and PI3K/AKT pathways. J Cell Mol Med. 25:11157–11169. 2021.PubMed/NCBI View Article : Google Scholar | |
Enriquez-Rios V, Dumitrache LC, Downing SM, Li Y, Brown EJ, Russell HR and McKinnon PJ: DNA-PKcs, ATM, and ATR interplay maintains genome integrity during neurogenesis. J Neurosci. 37:893–905. 2017.PubMed/NCBI View Article : Google Scholar | |
Tang Z, Pilié PG, Geng C, Manyam GC, Yang G, Park S, Wang D, Peng S, Wu C, Peng G, et al: ATR inhibition induces CDK1-SPOP signaling and enhances Anti-PD-L1 cytotoxicity in prostate cancer. Clin Cancer Res. 27:4898–4909. 2021.PubMed/NCBI View Article : Google Scholar | |
Mota JM, Barnett E, Nauseef JT, Nguyen B, Stopsack KH, Wibmer A, Flynn JR, Heller G, Danila DC, Rathkopf D, et al: Platinum-Based chemotherapy in metastatic prostate cancer with DNA repair gene alterations. JCO Precis Oncol. 4:355–366. 2020.PubMed/NCBI View Article : Google Scholar | |
Schmid S, Omlin A, Higano C, Sweeney C, Martinez Chanza N, Mehra N, Kuppen MCP, Beltran H, Conteduca V, Vargas Pivato de Almeida D, et al: Activity of Platinum-Based chemotherapy in patients with advanced prostate cancer with and without DNA repair gene aberrations. JAMA Netw Open. 3(e2021692)2020.PubMed/NCBI View Article : Google Scholar | |
Su YX, Yu CF, Xue P, Li LL, Xiao KM, Chu XL and Zhu SJ: Research progress on the treatment of advanced prostate cancer with Olaparib. Neoplasma. 68:1132–1138. 2021.PubMed/NCBI View Article : Google Scholar | |
Kim H, Xu H, George E, Hallberg D, Kumar S, Jagannathan V, Medvedev S, Kinose Y, Devins K, Verma P, et al: Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun. 11(3726)2020.PubMed/NCBI View Article : Google Scholar | |
Karzai F, VanderWeele D, Madan RA, Owens H, Cordes LM, Hankin A, Couvillon A, Nichols E, Bilusic M, Beshiri ML, et al: Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 6(141)2018.PubMed/NCBI View Article : Google Scholar | |
Bizzaro F, Fuso Nerini I, Taylor MA, Anastasia A, Russo M, Damia G, Guffanti F, Guana F, Ostano P, Minoli L, et al: VEGF pathway inhibition potentiates PARP inhibitor efficacy in ovarian cancer independent of BRCA status. J Hematol Oncol. 14(186)2021.PubMed/NCBI View Article : Google Scholar |