1
|
Chen Z, Jiang B, Ru X, Sun H, Sun D, Liu
X, Li Y, Li D, Guo X and Wang W: Mortality of stroke and its
subtypes in China: Results from a nationwide population-based
survey. Neuroepidemiology. 48:95–102. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Žitňanová I, Šiarnik P, Kollár B, Chomová
M, Pazderová P, Andrezálová L, Ježovičová M, Koňariková K,
Laubertová L, Krivošíková Z, et al: Oxidative stress markers and
their dynamic changes in patients after acute ischemic stroke. Oxid
Med Cell Longev. 2016(9761697)2016.PubMed/NCBI View Article : Google Scholar
|
3
|
Katan M and Luft A: Global burden of
stroke. Semin Neurol. 38:208–211. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Donkor ES: Stroke in the 21st century: A
snapshot of the burden, epidemiology, and quality of life. Stroke
Res Treat. 2018(3238165)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Boehme AK, Esenwa C and Elkind MS: Stroke
Risk factors, genetics, and prevention. Circ Res. 120:472–495.
2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Ma H, Campbell BCV, Parsons MW, Churilov
L, Levi CR, Hsu C, Kleinig TJ, Wijeratne T, Curtze S, Dewey HM, et
al: Thrombolysis guided by perfusion imaging up to 9 h after onset
of stroke. N Engl J Med. 380:1795–1803. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Campbell BCV, Ma H, Ringleb PA, Parsons
MW, Churilov L, Bendszus M, Levi CR, Hsu C, Kleinig TJ, Fatar M, et
al: Extending thrombolysis to 4·5-9 h and wake-up stroke using
perfusion imaging: A systematic review and meta-analysis of
individual patient data. Lancet. 394:139–147. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Li Y, Zhang X, Cui L, Chen R, Zhang Y,
Zhang C, Zhu X, He T, Shen Z, Dong L, et al: Salvianolic acids
enhance cerebral angiogenesis and neurological recovery by
activating JAK2/STAT3 signaling pathway after ischemic stroke in
mice. J Neurochem. 143:87–99. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Oshikawa M, Okada K, Kaneko N, Sawamoto K
and Ajioka I: Affinity-immobilization of VEGF on laminin porous
sponge enhances angiogenesis in the ischemic brain. Adv Healthc
Mater. 6:2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Javadi B, Sahebkar A and Emami SA: A
survey on saffron in major islamic traditional medicine books. Iran
J Basic Med Sci. 16:1–11. 2013.PubMed/NCBI
|
11
|
Khazdair MR, Boskabady MH, Hosseini M,
Rezaee R and M Tsatsakis A: The effects of Crocus sativus
(saffron) and its constituents on nervous system: A review.
Avicenna J Phytomed. 5:376–391. 2015.PubMed/NCBI
|
12
|
Nasrallah N: Ingredients used in foods and
medicinal preparations: Herbs, spices, aromatics, minerals, food
colors, and seasoning sauces. Treasure Trove of Benefits and
Variety at the Table: A Fourteenth-Century Egyptian Cookbook.
Brill, pp529-575, 2017.
|
13
|
Asalgoo S, Tat M, Sahraei H and Pirzad
Jahromi G: The psychoactive agent crocin can regulate
hypothalamic-pituitary-adrenal axis activity. Front Neurosci.
11(668)2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Mokhtari Hashtjini M, Pirzad Jahromi G,
Meftahi GH, Esmaeili D and Javidnazar D: Aqueous extract of saffron
administration along with amygdala deep brain stimulation promoted
alleviation of symptoms in post-traumatic stress disorder (PTSD) in
rats. Avicenna J Phytomed. 8:358–369. 2018.PubMed/NCBI
|
15
|
Saleem S, Ahmad M, Ahmad AS, Yousuf S,
Ansari MA, Khan MB, Ishrat T and Islam F: Effect of saffron
(Crocus sativus) on neurobehavioral and neurochemical
changes in cerebral ischemia in rats. J Med Food. 9:246–253.
2006.PubMed/NCBI View Article : Google Scholar
|
16
|
Vakili A, Einali MR and Bandegi AR:
Protective effect of crocin against cerebral ischemia in a
dose-dependent manner in a rat model of ischemic stroke. J Stroke
Cerebrovasc Dis. 23:106–113. 2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Tarantilis PA, Tsoupras G and Polissiou M:
Determination of saffron (Crocus sativus L.) components in
crude plant extract using high-performance liquid
chromatography-UV-visible photodiode-array detection-mass
spectrometry. J Chromatogr A. 699:107–118. 1995.PubMed/NCBI View Article : Google Scholar
|
18
|
Hosseinzadeh H and Younesi HM:
Antinociceptive and anti-inflammatory effects of Crocus sativus
L stigma and petal extracts in mice. BMC Pharmacol.
2(7)2002.PubMed/NCBI View Article : Google Scholar
|
19
|
Farahmand SK, Samini F, Samini M and
Samarghandian S: Safranal ameliorates antioxidant enzymes and
suppresses lipid peroxidation and nitric oxide formation in aged
male rat liver. Biogerontology. 14:63–71. 2013.PubMed/NCBI View Article : Google Scholar
|
20
|
Samarghandian S, Borji A, Delkhosh MB and
Samini F: Safranal treatment improves hyperglycemia, hyperlipidemia
and oxidative stress in streptozotocin-induced diabetic rats. J
Pharm Pharm Sci. 16:352–362. 2013.PubMed/NCBI View
Article : Google Scholar
|
21
|
Malaekeh-Nikouei B, Mousavi SH, Shahsavand
S, Mehri S, Nassirli H and Moallem SA: Assessment of cytotoxic
properties of safranal and nanoliposomal safranal in various cancer
cell lines. Phytother Res. 27:1868–1873. 2013.PubMed/NCBI View
Article : Google Scholar
|
22
|
Imenshahidi M, Hosseinzadeh H and
Javadpour Y: Hypotensive effect of aqueous saffron extract
(Crocus sativus L.) and its constituents, safranal and
crocin, in normotensive and hypertensive rats. Phytother Res.
24:990–994. 2010.PubMed/NCBI View
Article : Google Scholar
|
23
|
Baluchnejadmojarad T, Mohamadi-Zarch SM
and Roghani M: Safranal, an active ingredient of saffron,
attenuates cognitive deficits in amyloid β-induced rat model of
Alzheimer's disease: Underlying mechanisms. Metab Brain Dis.
34:1747–1759. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Bo-Qiang L, Si-Tong Z, Zu-Yuan L, Wan-Yun
N, Bin C, Yuan L, Xuyun L, Liangen M, You-Chao C, Xin-Zhen Y, et
al: Safranal carried by nanostructured lipid vehicles inhibits
generalized epilepsy in mice. Pharmazie. 73:207–212.
2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang C, Ma J, Fan L, Zou Y, Dang X, Wang
K and Song J: Neuroprotective effects of safranal in a rat model of
traumatic injury to the spinal cord by anti-apoptotic,
anti-inflammatory and edema-attenuating. Tissue Cell. 47:291–300.
2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Pan PK, Qiao LY and Wen XN: Safranal
prevents rotenone-induced oxidative stress and apoptosis in an in
vitro model of Parkinson's disease through regulating Keap1/Nrf2
signaling pathway. Cell Mol Biol (Noisy-le-grand). 62:11–17.
2016.PubMed/NCBI
|
27
|
Sadeghnia HR, Shaterzadeh H, Forouzanfar F
and Hosseinzadeh H: Neuroprotective effect of safranal, an active
ingredient of Crocus sativus, in a rat model of transient
cerebral ischemia. Folia Neuropathol. 55:206–213. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Hosseinzadeh H and Sadeghnia HR: Safranal,
a constituent of Crocus sativus (saffron), attenuated
cerebral ischemia induced oxidative damage in rat hippocampus. J
Pharm Pharm Sci. 8:394–399. 2005.PubMed/NCBI
|
29
|
Forouzanfar F, Asadpour E, Hosseinzadeh H,
Boroushaki MT, Adab A, Dastpeiman SH and Sadeghnia HR: Safranal
protects against ischemia-induced PC12 cell injury through
inhibiting oxidative stress and apoptosis. Naunyn Schmiedebergs
Arch Pharmacol. 394:707–716. 2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Meng X, Wang M, Wang X, Sun G, Ye J, Xu H
and Sun X: Suppression of NADPH oxidase- and mitochondrion-derived
superoxide by Notoginsenoside R1 protects against cerebral
ischemia-reperfusion injury through estrogen receptor-dependent
activation of Akt/Nrf2 pathways. Free Radic Res. 48:823–838.
2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Belayev L, Alonso OF, Busto R, Zhao W and
Ginsberg MD: Middle cerebral artery occlusion in the rat by
intraluminal suture. Neurological and pathological evaluation of an
improved model. Stroke. 27:1616–1623. 1996.PubMed/NCBI View Article : Google Scholar
|
32
|
Alinejad B, Ghorbani A and Sadeghnia HR:
Effects of combinations of curcumin, linalool, rutin, safranal, and
thymoquinone on glucose/serum deprivation-induced cell death.
Avicenna J Phytomed. 3:321–328. 2013.PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
34
|
Patel AR, Ritzel R, McCullough LD and Liu
F: Microglia and ischemic stroke: A double-edged sword. Int J
Physiol Pathophysiol Pharmacol. 5:73–90. 2013.PubMed/NCBI
|
35
|
Zhu J, Dou S, Jiang Y, Chen J, Wang C and
Cheng B: Apelin-13 protects dopaminergic neurons in MPTP-induced
Parkinson's disease model mice through inhibiting endoplasmic
reticulum stress and promoting autophagy. Brain Res. 1715:203–212.
2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Herskovits AZ and Guarente L: SIRT1 in
neurodevelopment and brain senescence. Neuron. 81:471–483.
2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Edelbrock AN, Àlvarez Z, Simkin D, Fyrner
T, Chin SM, Sato K, Kiskinis E and Stupp SI: Supramolecular
nanostructure activates TrkB receptor signaling of neuronal cells
by mimicking brain-derived neurotrophic factor. Nano Lett.
18:6237–6247. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Dimyan MA and Cohen LG: Neuroplasticity in
the context of motor rehabilitation after stroke. Nat Rev Neurol.
7:76–85. 2011.PubMed/NCBI View Article : Google Scholar
|
39
|
Liu Y, Li C, Wang J, Fang Y, Sun H, Tao X,
Zhou XF and Liao H: Nafamostat mesilate improves neurological
outcome and axonal regeneration after stroke in rats. Mol
Neurobiol. 54:4217–4231. 2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Virani SS, Alonso A, Aparicio HJ, Benjamin
EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng
S, Delling FN, et al: Heart disease and stroke statistics-2021
update: A report from the american heart association. Circulation.
143:e254–e743. 2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Liu W, Wang X, O'Connor M, Wang G and Han
F: Brain-derived neurotrophic factor and its potential therapeutic
role in stroke comorbidities. Neural Plast.
2020(1969482)2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Fonarow GC, Smith EE, Saver JL, Reeves MJ,
Bhatt DL, Grau-Sepulveda MV, Olson DM, Hernandez AF, Peterson ED
and Schwamm LH: Timeliness of tissue-type plasminogen activator
therapy in acute ischemic stroke: Patient characteristics, hospital
factors, and outcomes associated with door-to-needle times within
60 min. Circulation. 123:750–758. 2011.PubMed/NCBI View Article : Google Scholar
|
43
|
Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu
L and Hu B: Diverse functions and mechanisms of pericytes in
ischemic stroke. Curr Neuropharmacol. 15:892–905. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Zhu T, Wang L, Xie W, Meng X, Feng Y, Sun
G and Sun X: Notoginsenoside R1 improves cerebral
ischemia/reperfusion injury by promoting neurogenesis via the
BDNF/Akt/CREB pathway. Front Pharmacol. 12(615998)2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Herpich F and Rincon F: Management of
acute ischemic stroke. Crit Care Med. 48:1654–1663. 2020.PubMed/NCBI View Article : Google Scholar
|
46
|
Xu S, Yang J, Wan H, Yu L and He Y:
Combination of radix astragali and safflower promotes angiogenesis
in rats with ischemic stroke via silencing PTGS2. Int J Mol Sci.
24(2126)2023.PubMed/NCBI View Article : Google Scholar
|
47
|
Wen HC, Huo YN, Chou CM and Lee WS: PMA
inhibits endothelial cell migration through activating the
PKC-δ/Syk/NF-κB-mediated up-regulation of Thy-1. Sci Rep.
8(16247)2018.PubMed/NCBI View Article : Google Scholar
|
48
|
Yao Y: Basement membrane and stroke. J
Cereb Blood Flow Metab. 39:3–19. 2019.PubMed/NCBI View Article : Google Scholar
|
49
|
Save SS, Rachineni K, Hosur RV and
Choudhary S: Natural compound safranal driven inhibition and
dis-aggregation of α-synuclein fibrils. Int J Biol Macromol.
141:585–595. 2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Vogt N: Sensing neurotransmitters. Nat
Methods. 16(17)2019.PubMed/NCBI View Article : Google Scholar
|
51
|
Ramer MS, Priestley JV and McMahon SB:
Functional regeneration of sensory axons into the adult spinal
cord. Nature. 403:312–316. 2000.PubMed/NCBI View Article : Google Scholar
|
52
|
Wang T, Zhang J, Li P, Ding Y, Tang J,
Chen G and Zhang JH: NT-4 attenuates neuroinflammation via
TrkB/PI3K/FoxO1 pathway after germinal matrix hemorrhage in
neonatal rats. J Neuroinflammation. 17(158)2020.PubMed/NCBI View Article : Google Scholar
|
53
|
Michan S and Sinclair D: Sirtuins in
mammals: Insights into their biological function. Biochem J.
404:1–13. 2007.PubMed/NCBI View Article : Google Scholar
|
54
|
Zakhary SM, Ayubcha D, Dileo JN, Jose R,
Leheste JR, Horowitz JM and Torres G: Distribution analysis of
deacetylase SIRT1 in rodent and human nervous systems. Anat Rec
(Hoboken). 293:1024–1032. 2010.PubMed/NCBI View Article : Google Scholar
|
55
|
Fu B, Zhang J, Zhang X, Zhang C, Li Y,
Zhang Y, He T, Li P, Zhu X, Zhao Y, et al: Alpha-lipoic acid
upregulates SIRT1-dependent PGC-1α expression and protects mouse
brain against focal ischemia. Neuroscience. 281:251–257.
2014.PubMed/NCBI View Article : Google Scholar
|
56
|
Lv H, Wang L, Shen J, Hao S, Ming A, Wang
X, Su F and Zhang Z: Salvianolic acid B attenuates apoptosis and
inflammation via SIRT1 activation in experimental stroke rats.
Brain Res Bull. 115:30–36. 2015.PubMed/NCBI View Article : Google Scholar
|
57
|
Wan D, Zhou Y, Wang K, Hou Y, Hou R and Ye
X: Resveratrol provides neuroprotection by inhibiting
phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after
stroke in rats. Brain Res Bull. 121:255–262. 2016.PubMed/NCBI View Article : Google Scholar
|