MicroRNAs in chronic pediatric diseases (Review)
- Authors:
- Mingyao Zhang
- Yanhua Han
-
Affiliations: Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China, Department of Pediatrics, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China - Published online on: January 15, 2024 https://doi.org/10.3892/etm.2024.12388
- Article Number: 100
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Perrin JM, Bloom SR and Gortmaker SL: The increase of childhood chronic conditions in the United States. JAMA. 297:2755–2759. 2007.PubMed/NCBI View Article : Google Scholar | |
Janse AJ, Uiterwaal CSPM, Gemke RJBJ, Kimpen JLL and Sinnema G: A difference in perception of quality of life in chronically ill children was found between parents and pediatricians. J Clin Epidemiol. 58:495–502. 2005.PubMed/NCBI View Article : Google Scholar | |
Omran A, Elimam D and Yin F: MicroRNAs: New insights into chronic childhood diseases. Biomed Res Int. 2013(291826)2013.PubMed/NCBI View Article : Google Scholar | |
Dong H, Lei J, Ding L, Wen Y, Ju H and Zhang X: MicroRNA: Function, detection, and bioanalysis. Chem Rev. 113:6207–6233. 2013.PubMed/NCBI View Article : Google Scholar | |
Mohr AM and Mott JL: Overview of MicroRNA biology. Semin Liver Dis. 35:3–11. 2015.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Li Q, Zhang R, Dai X, Chen W and Xing D: Circulating microRNAs: Biomarkers of disease. Clin Chim Acta. 516:46–54. 2021.PubMed/NCBI View Article : Google Scholar | |
Yoon JH, Abdelmohsen K and Gorospe M: Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 34:9–14. 2014.PubMed/NCBI View Article : Google Scholar | |
Calderari S, Diawara MR, Garaud A and Gauguier D: Biological roles of microRNAs in the control of insulin secretion and action. Physiol Genomics. 49:1–10. 2017.PubMed/NCBI View Article : Google Scholar | |
Romakina VV, Zhirov IV, Nasonova SN, Zaseeva AV, Kochetov AG, Liang OV and Tereshchenko SN: MicroRNAs as biomarkers of cardiovascular diseases. Kardiologiya. 58:66–71. 2018.PubMed/NCBI View Article : Google Scholar : (In Russian). | |
Ward BP, Tsongalis GJ and Kaur P: MicroRNAs in chronic lymphocytic leukemia. Exp Mol Pathol. 90:173–178. 2011.PubMed/NCBI View Article : Google Scholar | |
Cao RY, Li Q, Miao Y, Zhang Y, Yuan W, Fan L, Liu G, Mi Q and Yang J: The emerging role of MicroRNA-155 in cardiovascular diseases. Biomed Res Int. 2016(9869208)2016.PubMed/NCBI View Article : Google Scholar | |
Lukiw WJ: microRNA-146a signaling in Alzheimer's disease (AD) and prion disease (PrD). Front Neurol. 11(462)2020.PubMed/NCBI View Article : Google Scholar | |
Fernandez-Valverde SL, Taft RJ and Mattick JS: MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes. 60:1825–1831. 2011.PubMed/NCBI View Article : Google Scholar | |
Wang K: The ubiquitous existence of MicroRNA in body fluids. Clin Chem. 63:784–785. 2017.PubMed/NCBI View Article : Google Scholar | |
Sims EK, Lakhter AJ, Anderson-Baucum E, Kono T, Tong X and Evans-Molina C: MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia. 60:1057–1065. 2017.PubMed/NCBI View Article : Google Scholar | |
Nielsen LB, Wang C, Sørensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, Hougaard P, Juul A, Zhang CY, Pociot F and Mortensen HB: Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: Evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res. 2012:896362. 2012.PubMed/NCBI View Article : Google Scholar | |
Erener S, Mojibian M, Fox JK, Denroche HC and Kieffer TJ: Circulating miR-375 as a biomarker of β-cell death and diabetes in mice. Endocrinology. 154:603–608. 2013.PubMed/NCBI View Article : Google Scholar | |
Osipova J, Fischer DC, Dangwal S, Volkmann I, Widera C, Schwarz K, Lorenzen JM, Schreiver C, Jacoby U, Heimhalt M, et al: Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab. 99:E1661–E1665. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu X, Wang Y, Sun Z, Ren S, Yang W, Deng Y, Tian C, Yu Y and Gao B: Molecular expression and functional analysis of genes in children with temporal lobe epilepsy. J Integr Neurosci. 18:71–77. 2019.PubMed/NCBI View Article : Google Scholar | |
Han S, Wang WJ, Duan L, Hou ZL, Zeng JY, Li L, Meng MY, Zhang YY, Wang Y, Xie YH, et al: MicroRNA profiling of patients with sporadic atrial septal defect. Biotechnol Biotechnol Equip. 33:510–519. 2019. | |
Sánchez-Gómez MC, García-Mejía KA, Pérez-Díaz Conti M, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R, Klünder-Klünder M, Botello-Flores JA, Balderrábano-Saucedo NA and Contreras-Ramos A: MicroRNAs association in the cardiac hypertrophy secondary to complex congenital heart disease in children. Pediatr Cardiol. 38:991–1003. 2017.PubMed/NCBI View Article : Google Scholar | |
Xiao Y, Wang J, Chen Y, Zhou K, Wen J, Wang Y, Zhou Y, Pan W and Cai W: Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stallate cells by activating PI3K/Akt signaling. Cell Signal. 26:925–932. 2014.PubMed/NCBI View Article : Google Scholar | |
Shen W, Chen G, Dong R, Zhao R and Zheng S: MicroRNA-21/PTEN/Akt axis in the fibrogenesis of biliary atresia. J Pediatr Surg. 49:1738–1741. 2014.PubMed/NCBI View Article : Google Scholar | |
Hand NJ, Horner AM, Master ZR, Boateng LA, LeGuen C, Uvaydova M and Friedman JR: MicroRNA profiling identifies miR-29 as a regulator of disease-associated pathways in experimental biliary atresia. J Pediatr Gastroenterol Nutr. 54:186–192. 2012.PubMed/NCBI View Article : Google Scholar | |
Shen WJ, Dong R, Chen G and Zheng S: microRNA-222 modulates liver fibrosis in a murine model of biliary atresia. Biochem Biophys Res Commun. 446:155–159. 2014.PubMed/NCBI View Article : Google Scholar | |
Xiao Y, Wang J, Yan W, Zhou Y, Chen Y, Zhou K, Wen J, Wang Y and Cai W: Dysregulated miR-124 and miR-200 expression contribute to cholangiocyte proliferation in the cholestatic liver by targeting IL-6/STAT3 signalling. J Hepatol. 62:889–896. 2015.PubMed/NCBI View Article : Google Scholar | |
Yu DS, An FM, Gong BD, Xiang XG, Lin LY, Wang H and Xie Q: The regulatory role of microRNA-1187 in TNF-α-mediated hepatocyte apoptosis in acute liver failure. Int J Mol Med. 29:663–668. 2012.PubMed/NCBI View Article : Google Scholar | |
An F, Gong B, Wang H, Yu D, Zhao G, Lin L, Tang W, Yu H, Bao S and Xie Q: miR-15b and miR-16 regulate TNF mediated hepatocyte apoptosis via BCL2 in acute liver failure. Apoptosis. 17:702–716. 2012.PubMed/NCBI View Article : Google Scholar | |
Salehi S, Brereton HC, Arno MJ, Darling D, Quaglia A, O'Grady J, Heaton N and Aluvihare VR: Human liver regeneration is characterized by the coordinated expression of distinct microRNA governing cell cycle fate. Am J Transplant. 13:1282–1295. 2013.PubMed/NCBI View Article : Google Scholar | |
Dattaroy D, Pourhoseini S, Das S, Alhasson F, Seth RK, Nagarkatti M, Michelotti GA, Diehl AM and Chatterjee S: Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 308:G298–G312. 2015.PubMed/NCBI View Article : Google Scholar | |
Israelow B, Mullokandov G, Agudo J, Sourisseau M, Bashir A, Maldonado AY, Dar AC, Brown BD and Evans MJ: Hepatitis C virus genetics affects miR-122 requirements and response to miR-122 inhibitors. Nat Commun. 5(5408)2014.PubMed/NCBI View Article : Google Scholar | |
Karam RA and Abd Elrahman DM: Differential expression of miR-155 and Let-7a in the plasma of childhood asthma: Potential biomarkers for diagnosis and severity. Clin Biochem. 68:30–36. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Sun E, Li X, Zhang M, Tang Z, He L and Lv K: miR-155 contributes to Df1-induced asthma by increasing the proliferative response of Th cells via CTLA-4 downregulation. Cell Immunol. 314:1–9. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Yang Q, Xu H, Zhang J, Deng H, Gao H, Yang J, Zhao D and Liu F: miRNA-221-3p enhances the secretion of interleukin-4 in mast cells through the phosphatase and tensin homolog/p38/nuclear factor-kappaB pathway. PLoS One. 11(e0148821)2016.PubMed/NCBI View Article : Google Scholar | |
Tsitsiou E, Williams AE, Moschos SA, Patel K, Rossios C, Jiang X, Adams OD, Macedo P, Booton R, Gibeon D, et al: Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J Allergy Clin Immunol. 129:95–103. 2012.PubMed/NCBI View Article : Google Scholar | |
Kärner J, Wawrzyniak M, Tankov S, Runnel T, Aints A, Kisand K, Altraja A, Kingo K, Akdis CA, Akdis M and Rebane A: Increased microRNA-323-3p in IL-22/IL-17-producing T cells and asthma: A role in the regulation of the TGF-β pathway and IL-22 production. Allergy. 72:55–65. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu F, Qin HB, Xu B, Zhou H and Zhao DY: Profiling of miRNAs in pediatric asthma: Upregulation of miRNA-221 and miRNA-485-3p. Mol Med Rep. 6:1178–1182. 2012.PubMed/NCBI View Article : Google Scholar | |
Tian M, Zhou Y, Jia H, Zhu X and Cui Y: The clinical significance of changes in the expression levels of MicroRNA-1 and inflammatory factors in the peripheral blood of children with acute-stage asthma. Biomed Res Int. 2018(7632487)2018.PubMed/NCBI View Article : Google Scholar | |
Liang Y, Feng Y, Wu W, Chang C, Chen D, Chen S and Zhen G: microRNA-218-5p plays a protective role in eosinophilic airway inflammation via targeting δ-catenin, a novel catenin in asthma. Clin Exp Allergy. 50:29–40. 2020.PubMed/NCBI View Article : Google Scholar | |
Ren L, Zhu R and Li X: Silencing miR-181a produces neuroprotection against hippocampus neuron cell apoptosis post-status epilepticus in a rat model and in children with temporal lobe epilepsy. Genet Mol Res. 15:2016.PubMed/NCBI View Article : Google Scholar | |
Peng J, Omran A, Ashhab MU, Kong H, Gan N, He F and Yin F: Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci. 50:291–297. 2013.PubMed/NCBI View Article : Google Scholar | |
Risbud RM, Lee C and Porter BE: Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus. Brain Res. 1424:53–59. 2011.PubMed/NCBI View Article : Google Scholar | |
Li N, Pan J, Liu W, Li Y, Li F and Liu M: MicroRNA-15a-5p serves as a potential biomarker and regulates the viability and apoptosis of hippocampus neuron in children with temporal lobe epilepsy. Diagn Pathol. 15(46)2020.PubMed/NCBI View Article : Google Scholar | |
Achkar NP, Cambiagno DA and Manavella PA: miRNA biogenesis: A dynamic pathway. Trends Plant Sci. 21:1034–1044. 2016.PubMed/NCBI View Article : Google Scholar | |
Kandhavelu M and Kandhavelu J: Pre-piRNA biogenesis mimics the pathway of miRNA. Biochem Syst Ecol. 43:200–204. 2012. | |
Murchison EP and Hannon GJ: miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol. 16:223–229. 2004.PubMed/NCBI View Article : Google Scholar | |
Saj A and Lai EC: Control of microRNA biogenesis and transcription by cell signaling pathways. Curr Opin Genet Dev. 21:504–510. 2011.PubMed/NCBI View Article : Google Scholar | |
Suzuki HI and Miyazono K: Dynamics of microRNA biogenesis: Crosstalk between p53 network and microRNA processing pathway. J Mol Med (Berl). 88:1085–1094. 2010.PubMed/NCBI View Article : Google Scholar | |
Winter J, Jung S, Keller S, Gregory RI and Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 11:228–234. 2009.PubMed/NCBI View Article : Google Scholar | |
American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care. 38 (Suppl 1):S8–S16. 2015.PubMed/NCBI View Article : Google Scholar | |
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 37 (Suppl 1):S81–S90. 2014.PubMed/NCBI View Article : Google Scholar | |
Tuomi T, Santoro N, Caprio S, Cai M, Weng J and Groop L: The many faces of diabetes: A disease with increasing heterogeneity. Lancet. 383:1084–1094. 2014.PubMed/NCBI View Article : Google Scholar | |
Ma RCW: Epidemiology of diabetes and diabetic complications in China. Diabetologia. 61:1249–1260. 2018.PubMed/NCBI View Article : Google Scholar | |
Moheet A, Mangia S and Seaquist ER: Impact of diabetes on cognitive function and brain structure. In: Year in Diabetes and Obesity. Powers AC and Ahima RS (eds). pp60-71, 2015. | |
Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA and Van Obberghen E: MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem. 282:19575–19588. 2007.PubMed/NCBI View Article : Google Scholar | |
Keller DM, Clark EA and Goodman RH: Regulation of microRNA-375 by cAMP in pancreatic β-cells. Mol Endocrinol. 26:989–999. 2012.PubMed/NCBI View Article : Google Scholar | |
Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M and Stoffel M: miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA. 106:5813–5818. 2009.PubMed/NCBI View Article : Google Scholar | |
Regazzi R: MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin Ther Targets. 22:153–160. 2018.PubMed/NCBI View Article : Google Scholar | |
Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ and Liu ZM: MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract. 91:94–100. 2011.PubMed/NCBI View Article : Google Scholar | |
Shen Z, Yu Y, Yang Y, Xiao X, Sun T, Chang X, Tang W, Zhu Y and Han X: miR-25 and miR-92b regulate insulin biosynthesis and pancreatic β-cell apoptosis. Endocrine. 76:526–535. 2022.PubMed/NCBI View Article : Google Scholar | |
Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P and Stoffel M: A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 432:226–230. 2004.PubMed/NCBI View Article : Google Scholar | |
Corno AF, Koerner TS and Salazar JD: Innovative treatments for congenital heart defects. World J Pediatr. 19:1–6. 2023.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Ma XJ, Wang HJ, Li WC, Chen L, Ma D and Huang GY: Expression of Cx43-related microRNAs in patients with tetralogy of Fallot. World J Pediatr. 10:138–144. 2014.PubMed/NCBI View Article : Google Scholar | |
Dueñas A, Exposit A, Aranega A and Franco D: The role of non-coding RNA in congenital heart diseases. J Cardiovasc Dev Dis. 6(15)2019.PubMed/NCBI View Article : Google Scholar | |
Gu H, Chen L, Xue J, Huang T, Wei X, Liu D, Ma W, Cao S and Yuan Z: Expression profile of maternal circulating microRNAs as non-invasive biomarkers for prenatal diagnosis of congenital heart defects. Biomed Pharmacother. 109:823–830. 2019.PubMed/NCBI View Article : Google Scholar | |
Hoelscher SC, Doppler SA, Dreßen M, Lahm H, Lange R and Krane M: MicroRNAs: Pleiotropic players in congenital heart disease and regeneration. J Thorac Dis. 9 (Suppl 1):S64–S81. 2017.PubMed/NCBI View Article : Google Scholar | |
Kalayinia S, Arjmand F, Maleki M, Malakootian M and Singh CP: MicroRNAs: Roles in cardiovascular development and disease. Cardiovasc Pathol. 50(107296)2021.PubMed/NCBI View Article : Google Scholar | |
Arabian M, Mirzadeh Azad F, Maleki M and Malakootian M: Insights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies. Iran J Basic Med Sci. 23:961–969. 2020.PubMed/NCBI View Article : Google Scholar | |
Paul S, Ruiz-Manriquez LM, Ledesma-Pacheco SJ, Benavides-Aguilar JA, Torres-Copado A, Morales-Rodríguez JI, De Donato M and Srivastava A: Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: A review. Arch Biochem Biophys. 699(108763)2021.PubMed/NCBI View Article : Google Scholar | |
Smith T, Rajakaruna C, Caputo M and Emanueli C: MicroRNAs in congenital heart disease. Ann Transl Med. 3(333)2015.PubMed/NCBI View Article : Google Scholar | |
Tian J, An X and Niu L: Role of microRNAs in cardiac development and disease. Exp Ther Med. 13:3–8. 2017.PubMed/NCBI View Article : Google Scholar | |
Xie WQ, Zhou L, Chen Y and Ni B: Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects. World J Emerg Med. 7:85–89. 2016.PubMed/NCBI View Article : Google Scholar | |
Yan HL and Hua YM: Research advances on role of microRNAs in congenital heart diseases. Zhongguo Dang Dai Er Ke Za Zhi. 16:1070–1074. 2014.PubMed/NCBI(In Chinese). | |
Zajkowska A and Małecki M: microRNAs role in heart development. Postepy Biol Komorki. 42:107–126. 2015. | |
Wei Y, Peng S, Wu M, Sachidanandam R, Tu Z, Zhang S, Falce C, Sobie EA, Lebeche D and Zhao Y: Multifaceted roles of miR-1s in repressing the fetal gene program in the heart. Cell Res. 24:278–292. 2014.PubMed/NCBI View Article : Google Scholar | |
Xin M, Olson EN and Bassel-Duby R: Mending broken hearts: Cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 14:529–541. 2013.PubMed/NCBI View Article : Google Scholar | |
Bruneau BG: The developmental genetics of congenital heart disease. Nature. 451:943–948. 2008.PubMed/NCBI View Article : Google Scholar | |
Ho PTB, Clark IM and Le LTT: MicroRNA-based diagnosis and therapy. Int J Mol Sci. 23(7167)2022.PubMed/NCBI View Article : Google Scholar | |
Yu Z, Han S, Hu P, Zhu C, Wang X, Qian L and Guo X: Potential role of maternal serum microRNAs as a biomarker for fetal congenital heart defects. Med Hypotheses. 76:424–426. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian L, Zhu C, Hu X, Li M, Guo X, et al: Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 424:66–72. 2013.PubMed/NCBI View Article : Google Scholar | |
Della Corte C, Mosca A, Vania A, Alterio A, Alisi A and Nobili V: Pediatric liver diseases: Current challenges and future perspectives. Expert Rev Gastroenterol Hepatol. 10:255–265. 2016.PubMed/NCBI View Article : Google Scholar | |
Calvopina DA, Coleman MA, Lewindon PJ and Ramm GA: Function and regulation of MicroRNAs and their potential as biomarkers in paediatric liver disease. Int J Mol Sci. 17(1795)2016.PubMed/NCBI View Article : Google Scholar | |
Makri E, Goulas A and Polyzos SA: Epidemiology, pathogenesis, diagnosis and emerging treatment of nonalcoholic fatty liver disease. Arch Med Res. 52:25–37. 2021.PubMed/NCBI View Article : Google Scholar | |
Gheorghe G, Bungău S, Ceobanu G, Ilie M, Bacalbaşa N, Bratu OG, Vesa CM, Găman MA and Diaconu CC: The non-invasive assessment of hepatic fibrosis. J Formos Med Assoc. 120:794–803. 2021.PubMed/NCBI View Article : Google Scholar | |
Tadokoro T, Morishita A and Masaki T: Diagnosis and therapeutic management of liver fibrosis by MicroRNA. Int J Mol Sci. 22(8139)2021.PubMed/NCBI View Article : Google Scholar | |
Wang X, He Y, Mackowiak B and Gao B: MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut. 70:784–795. 2021.PubMed/NCBI View Article : Google Scholar | |
Hartley JL, Davenport M and Kelly DA: Biliary atresia. Lancet. 374:1704–1713. 2009.PubMed/NCBI View Article : Google Scholar | |
Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH, Doo E and Sokol RJ: Biliary atresia: Clinical and research challenges for the twenty-first century. Hepatology. 68:1163–1173. 2018.PubMed/NCBI View Article : Google Scholar | |
Sokol RJ, Shepherd RW, Superina R, Bezerra JA, Robuck P and Hoofnagle JH: Screening and outcomes in biliary atresia: Summary of a national institutes of health workshop. Hepatology. 46:566–581. 2007.PubMed/NCBI View Article : Google Scholar | |
Balasubramaniyan N, Devereaux MW, Orlicky DJ, Sokol RJ and Suchy FJ: Up-regulation of miR-let7a-5p leads to decreased expression of ABCC2 in obstructive cholestasis. Hepatol Commun. 3:1674–1686. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhao R, Dong R, Yang Y, Wang Y, Ma J, Wang J, Li H and Zheng S: MicroRNA-155 modulates bile duct inflammation by targeting the suppressor of cytokine signaling 1 in biliary atresia. Pediatr Res. 82:1007–1016. 2017.PubMed/NCBI View Article : Google Scholar | |
Dong R, Zheng Y, Chen G, Zhao R, Zhou Z and Zheng S: miR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A. J Pediatr Gastroenterol Nutr. 60:84–90. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhao D, Luo Y, Xia Y, Zhang JJ and Xia Q: MicroRNA-19b expression in human biliary atresia specimens and its role in BA-related fibrosis. Dig Dis Sci. 62:689–698. 2017.PubMed/NCBI View Article : Google Scholar | |
Yoneyama T, Ueno T, Masahata K, Toyama C, Maeda A, Tazuke Y, Oue T, Miyagawa S and Okuyama H: Elevation of microRNA-214 is associated with progression of liver fibrosis in patients with biliary atresia. Pediatr Surg Int. 38:115–122. 2022.PubMed/NCBI View Article : Google Scholar | |
Chang J, Liang J, Chai C, Liu F, Tao B, Wang H, Tong Y, Wang Z and Xia H: MiR-100 rs1834306 A>G increases biliary atresia risk in Southern Han Chinese children. Biomed Res Int. 2023(4835839)2023.PubMed/NCBI View Article : Google Scholar | |
Su L, Tian Y, Fu M, Zhang RZ, Ou XF, Xia HM and Li RZ: Association of miRNA-492 rs2289030 G>C and miRNA-938 rs2505901 T>C gene polymorphisms with biliary atresia susceptibility. Biomed Environ Sci. 34:577–580. 2021.PubMed/NCBI View Article : Google Scholar | |
Shan Y, Shen N, Han L, Chen Q, Zhang J, Long X and Xia Q: MicroRNA-499 Rs3746444 polymorphism and biliary atresia. Dig Liver Dis. 48:423–428. 2016.PubMed/NCBI View Article : Google Scholar | |
Cook NL, Pereira TN, Lewindon PJ, Shepherd RW and Ramm GA: Circulating microRNAs as noninvasive diagnostic biomarkers of liver disease in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 60:247–254. 2015.PubMed/NCBI View Article : Google Scholar | |
Boonpiyathad T, Sözener ZC, Satitsuksanoa P and Akdis CA: Immunologic mechanisms in asthma. Semin Immunol. 46(101333)2019.PubMed/NCBI View Article : Google Scholar | |
Papi A, Brightling C, Pedersen SE and Reddel HK: Asthma. Lancet. 391:783–800. 2018.PubMed/NCBI View Article : Google Scholar | |
Liang J, Liu XH, Chen XM, Song XL, Li W and Huang Y: Emerging roles of non-coding RNAs in childhood asthma. Front Pharmacol. 13(856104)2022.PubMed/NCBI View Article : Google Scholar | |
Kai W, Qian XU and Qun WUZ: MicroRNAs and asthma regulation. Iran J Allergy Asthma Immunol. 14:120–125. 2015.PubMed/NCBI | |
Midyat L, Gulen F, Karaca E, Ozkinay F, Tanac R, Demir E, Cogulu O, Aslan A, Ozkinay C, Onay H and Atasever M: MicroRNA expression profiling in children with different asthma phenotypes. Pediatr Pulmonol. 51:582–587. 2016.PubMed/NCBI View Article : Google Scholar | |
Mousavi SR, Ahmadi A, Jamalkandi SA and Salimian J: Involvement of microRNAs in physiological and pathological processes in asthma. J Cell Physiol. 234:21547–21559. 2019.PubMed/NCBI View Article : Google Scholar | |
Jat KR and Kabra SK: Awareness about childhood asthma. Indian J Med Res. 145:581–583. 2017.PubMed/NCBI View Article : Google Scholar | |
Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK and Mattes J: Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev. 278:20–40. 2017.PubMed/NCBI View Article : Google Scholar | |
Specjalski K and Niedoszytko M: MicroRNAs: Future biomarkers and targets of therapy in asthma? Curr Opin Pulm Med. 26:285–292. 2020.PubMed/NCBI View Article : Google Scholar | |
van den Berge M and Tasena H: Role of microRNAs and exosomes in asthma. Curr Opin Pulm Med. 25:87–93. 2019.PubMed/NCBI View Article : Google Scholar | |
Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N and Del Pozo V: MicroRNAs as potential regulators of immune response networks in asthma and chronic obstructive pulmonary disease. Front Immunol. 11(608666)2021.PubMed/NCBI View Article : Google Scholar | |
Xu L, Yi M, Tan Y, Yi Z and Zhang Y: A comprehensive analysis of microRNAs as diagnostic biomarkers for asthma. Ther Adv Respir Dis. 14(1753466620981863)2020.PubMed/NCBI View Article : Google Scholar | |
Chiba Y: Non-coding RNAs and bronchial smooth muscle hyperresponsiveness in allergic bronchial asthma. Nihon Yakurigaku Zasshi. 155:364–368. 2020.PubMed/NCBI View Article : Google Scholar : (In Japanese). | |
Lukiw WJ: Circular RNA (circRNA) in Alzheimer's disease (AD). Front Genet. 4(307)2013.PubMed/NCBI View Article : Google Scholar | |
He X, Jing Z and Cheng G: MicroRNAs: New regulators of Toll-like receptor signalling pathways. Biomed Res Int. 2014(945169)2014.PubMed/NCBI View Article : Google Scholar | |
Katyayan A and Diaz-Medina G: Epilepsy: Epileptic syndromes and treatment. Neurol Clin. 39:779–795. 2021.PubMed/NCBI View Article : Google Scholar | |
Paul S, Reyes PR, Garza BS and Sharma A: MicroRNAs and child neuropsychiatric disorders: A brief review. Neurochem Res. 45:232–240. 2020.PubMed/NCBI View Article : Google Scholar | |
Ma Y: The challenge of microRNA as a biomarker of epilepsy. Curr Neuropharmacol. 16:37–42. 2018.PubMed/NCBI View Article : Google Scholar | |
Brennan GP and Henshall DC: microRNAs in the pathophysiology of epilepsy. Neurosci Lett. 667:47–52. 2018.PubMed/NCBI View Article : Google Scholar | |
Cava C, Manna I, Gambardella A, Bertoli G and Castiglioni I: Potential role of miRNAs as theranostic biomarkers of epilepsy. Mol Ther Nucleic Acids. 13:275–290. 2018.PubMed/NCBI View Article : Google Scholar | |
Ghafouri-Fard S, Hussen BM, Abak A, Taheri M and Jalili Khoshnoud R: Aberrant expression of miRNAs in epilepsy. Mol Biol Rep. 49:5057–5074. 2022.PubMed/NCBI View Article : Google Scholar | |
van der Lee JH, Mokkink LB, Grootenhuis MA, Heymans HS and Offringa M: Definitions and measurement of chronic health conditions in childhood: A systematic review. JAMA. 297:2741–2751. 2007.PubMed/NCBI View Article : Google Scholar | |
Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022.PubMed/NCBI View Article : Google Scholar | |
Groot M and Lee H: Sorting mechanisms for MicroRNAs into extracellular vesicles and their associated diseases. Cells. 9(1044)2020.PubMed/NCBI View Article : Google Scholar | |
Laggerbauer B and Engelhardt S: MicroRNAs as therapeutic targets in cardiovascular disease. J Clin Invest. 132(e159179)2022.PubMed/NCBI View Article : Google Scholar | |
Vegter EL, van der Meer P, de Windt LJ, Pinto YM and Voors AA: MicroRNAs in heart failure: From biomarker to target for therapy. Eur J Heart Fail. 18:457–468. 2016.PubMed/NCBI View Article : Google Scholar |