1
|
Ahmad J: Management of diabetic
nephropathy: Recent progress and future perspective. Diabetes Metab
Syndr. 9:343–58. 2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H,
Shi B, Sun H, Ba J, Chen B, et al: Prevalence of diabetes recorded
in mainland China using 2018 diagnostic criteria from the American
diabetes association: National cross sectional study. BMJ.
369(m997)2020.PubMed/NCBI View
Article : Google Scholar
|
3
|
Weng JP and Bi Y: Epidemiological status
of chronic diabetic complications in China. Chin Med J (Engl).
128:3267–3269. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Radcliffe NJ, Seah JM, Clarke M, MacIsaac
RJ, Jerums G and Ekinci EI: Clinical predictive factors in diabetic
kidney disease progression. J Diabetes Investig. 8:6–18.
2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y,
Lian F and Tong X: Signaling pathways involved in diabetic renal
fibrosis. Front Cell Dev Biol. 9(696542)2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Carew RM, Wang B and Kantharidis P: The
role of EMT in renal fibrosis. Cell Tissue Res. 347:103–116.
2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Sisto M, Lorusso L, Ingravallo G, Tamma R,
Ribatti D and Lisi S: The TGF-β1 signaling pathway as an attractive
target in the fibrosis pathogenesis of Sjögren's syndrome.
Mediators Inflamm. 2018(1965935)2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Sawires H, Botrous O, Aboulmagd A, Madani
N and Abdelhaleem O: Transforming growth factor-β1 in children with
diabetic nephropathy. Pediatr Nephrol. 34:81–85. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Qiao YC, Chen YL, Pan YH, Ling W, Tian F,
Zhang XX and Zhao HL: Changes of transforming growth factor beta 1
in patients with type 2 diabetes and diabetic nephropathy. A
PRISMA-compliant systematic review and meta-analysis. Medicine
(Baltimore). 96(e6583)2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Zheng ZC, Zhu W, Lei L, Liu XQ and Wu YG:
Wogonin ameliorates renal inflammation and fibrosis by inhibiting
NF-κB and TGF-β1/Smad3 signaling pathways in diabetic nephropathy.
Drug Des Devel Ther. 14:4135–4148. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Sun Z, Ma Y, Chen F, Wang S, Chen B and
Shi J: miR-133b and miR-199b knockdown attenuate TGF-β1-induced
epithelial to mesenchymal transition and renal fibrosis by
targeting SIRT1 in diabetic nephropathy. Eur J Pharmacol.
837:96–104. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Geng XQ, Ma A, He JZ, Wang L, Jia YL, Shao
GY, Li M, Zhou H, Lin SQ and Ran JH: Ganoderic acid hinders renal
fibrosis via suppressing the TGF-β/Smad and MAPK signaling
pathways. Acta Pharmacol Sin. 41:670–677. 2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Miao XJ, Bi TT, Tang JM, Lv R, Gui DK and
Yang XF: Regulatory mechanism of TGF-β1/SGK1 pathway in
tubulointerstitial fibrosis of diabetic nephropathy. Eur Rev Med
Pharmacol Sci. 23:10482–10488. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Tatemoto K, Hosoya M, Habata Y, Fujii R,
Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, et
al: Isolation and characterization of a novel endogenous peptide
ligand for the human APJ receptor. Biochem Biophys Res Commun.
251:471–476. 1998.PubMed/NCBI View Article : Google Scholar
|
15
|
Chapman FA, Nyimanu D, Maguire JJ,
Davenport AP, Newby DE and Dhaun N: The therapeutic potential of
apelin in kidney disease. Nat Rev Nephrol. 17:840–853.
2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Habchi M, Duvillard L, Cottet V, Brindisi
MC, Bouillet B, Beacco M, Crevisy E, Buffier P, Baillot-Rudoni S,
Verges B and Petit JM: Circulating apelin is increased in patients
with type 1 or type 2 diabetes and is associated with better
glycaemic control. Clin Endocrinol (Oxf). 81:696–701.
2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Demirpence M, Yilmaz H, Colak A, Pamuk BO,
Karakoyun I and Basok B: Apelin: A potential novel serum biomarker
for early detection of diabetic nephropathy in patients with type 2
diabetes. North Clin Istanb. 6:151–155. 2118.PubMed/NCBI View Article : Google Scholar
|
18
|
Iwano M: EMT and TGF-beta in renal
fibrosis. Front Biosci (Schol Ed). 2:229–238. 2010.PubMed/NCBI View
Article : Google Scholar
|
19
|
Lv SY, Yang YJ and Chen Q: Regulation of
feeding behavior, gastrointestinal function and fluid homeostasis
by apelin. Peptides. 44:87–92. 2013.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang Y, Jiang W, Sun W, Guo W, Xia B,
Shen X, et al: Neuroprotective Roles of Apelin-13 in Neurological
Diseases. Neurochem Res. 48:1648–1662. 2023.PubMed/NCBI View Article : Google Scholar
|
21
|
Von Elm E, Altman DG, Egger M, Pocock SJ,
Gøtzsche PC, Vandenbroucke JP and STROBE Initiative: The
strengthening the reporting of observational studies in
epidemiology (STROBE) statement: Guidelines for reporting
observational studies. Lancet. 370:1453–1457. 2007.PubMed/NCBI View Article : Google Scholar
|
22
|
Kidney Disease: Improving Global Outcomes
(KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline
for diabetes management in chronic kidney disease. Kidney Int.
98(4S):S1–S115. 2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Brownlee M: The pathobiology of diabetic
complications: A unifying mechanism. Diabetes. 54:1615–1625.
2005.PubMed/NCBI View Article : Google Scholar
|
24
|
Stevens PE and Levin A: Evaluation and
management of chronic kidney disease: Synopsis of the kidney
disease: Improving global outcomes 2012 clinical practice
guideline. Ann Intern Med. 158:825–830. 2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang BH, Wang W, Wang H, Yin J and Zeng
XJ: Promoting effects of the adipokine, apelin, on diabetic
nephropathy. PLoS One. 8(e60457)2013.PubMed/NCBI View Article : Google Scholar
|
26
|
Day RT, Cavaglieri RC and Feliers D:
Apelin retards the progression of diabetic nephropathy. Am J
Physiol Renal Physiol. 304:F788–F800. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Meral C, Tascilar E, Karademir F, Tanju
IA, Cekmez F, Ipcioglu OM, Ercin CN, Gocmen I and Dogru T: Elevated
plasma levels of apelin in children with type 1 diabetes mellitus.
J Pediatric Endocrinol Metab. 23:497–502. 2010.PubMed/NCBI View Article : Google Scholar
|
28
|
Meng XM, Nikolic-Paterson DJ and Lan HY:
TGF-β: The master regulator of fibrosis. Nat Rev Nephrol.
12:325–338. 2016.PubMed/NCBI View Article : Google Scholar
|
29
|
Wang LY, Diao ZL, Zhang DL, Zheng JF,
Zhang QD, Ding JX and Liu WH: The regulatory peptide apelin: A
novel inhibitor of renal interstitial fibrosis. Amino Acids.
46:2693–2704. 2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Kocer D, Karakukcu C, Ozturk F, Eroglu E
and Kocyigit I: Evaluation of fibrosis markers: Apelin and
transforming growth factor-β1 in autosomal dominant polycystic
kidney disease patients. Ther Apher Dial. 20:517–522.
2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Chen H, Wan D, Wang L, Peng A, Xiao H,
Petersen RB, Liu C, Zheng L and Huang K: Apelin protects against
acute renal injury by inhibiting TGF-β1. Biochim Biophys Acta.
1852:1278–1287. 2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Lu LL, Hu XJ, Yang Y, Xu S, Yang SY, Zhang
CY and Zhao QY: Correlation of myopia onset and progression with
corneal biomechanical parameters in children. World J Clin Cases.
10:1548–1556. 2022.PubMed/NCBI View Article : Google Scholar
|
33
|
Liu Y, Zhang J, Wang YJ and Zeng XJ:
Apelin involved in progression of diabetic nephropathy by
inhibiting autophagy in podocytes. Cell Death Dis.
8(e3006)2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Yin J, Wang Y, Chang J, Li B, Zhang J, Liu
Y, Lai S, Jiang Y, Li H and Zeng X: Apelin inhibited
epithelial-mesenchymal transition of podocytes in diabetic mice
through downregulating immunoproteasome subunits β5i. Cell Death
Dis. 9(1031)2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Gao Z, Zhong X, Tan YX and Liu D:
Apelin-13 alleviates diabetic nephropathy by enhancing nitric oxide
production and suppressing kidney tissue fibrosis. Int J Mol Med.
48(175)2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Zaki M, Kamal S, Ezzat W, Hassan N, Yousef
W, Ryad H, Mohamed R, Youness E, Basha W and Elhosary Y: Serum
apelin levels and metabolic risk markers in obese women. J Genet
Eng Biotechnol. 15:423–429. 2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Bertrand C, Pradère JP, Geoffre N,
Deleruyelle S, Masri B, Personnaz J, Le Gonidec S, Batut A, Louche
K, Moro C, et al: Chronic apelin treatment improves hepatic lipid
metabolism in obese and insulin-resistant mice by an indirect
mechanism. Endocrine. 60:112–121. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Zheng XD, Huang Y and Li H: Regulatory
role of Apelin-13-mediated PI3K/AKT signaling pathway in the
glucose and lipid metabolism of mouse with gestational diabetes
mellitus. Immunobiology. 226(152135)2021.PubMed/NCBI View Article : Google Scholar
|