1
|
Schleicher E, Gerdes C, Petersmann A,
Muller-Wieland D, Muller UA, Freckmann G, Heinemann L, Nauck M and
Landgraf R: Definition, Classification and Diagnosis of Diabetes
Mellitus. Exp Clin Endocrinol Diabetes. 130(S 01):S1–S8.
2022.PubMed/NCBI View Article : Google Scholar
|
2
|
Lovic D, Piperidou A, Zografou I, Grassos
H, Pittaras A and Manolis A: The growing epidemic of diabetes
mellitus. Curr Vasc Pharmacol. 18:104–109. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Yeram PB and Kulkarni YA: Glycosides and
vascular complications of diabetes. Chem Biodivers.
19(e202200067)2022.PubMed/NCBI View Article : Google Scholar
|
4
|
Eid S, Sas KM, Abcouwer SF, Feldman EL,
Gardner TW, Pennathur S and Fort PE: New insights into the
mechanisms of diabetic complications: Role of lipids and lipid
metabolism. Diabetologia. 62:1539–1549. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Deng Y, Li N, Wu Y, Wang M, Yang S, Zheng
Y, Deng X, Xiang D, Zhu Y, Xu P, et al: Global, Regional, and
National Burden of diabetes-related chronic kidney disease from
1990 to 2019. Front Endocrinol (Lausanne).
12(672350)2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Natesan V and Kim SJ: Diabetic
Nephropathy-a review of risk factors, progression, mechanism, and
dietary management. Biomol Ther (Seoul). 29:365–372.
2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Kopel J, Pena-Hernandez C and Nugent K:
Evolving spectrum of diabetic nephropathy. World J Diabetes.
10:269–279. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Sagoo MK and Gnudi L: Diabetic
nephropathy: An overview. Methods Mol Biol. 2067:3–7.
2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Faselis C, Katsimardou A, Imprialos K,
Deligkaris P, Kallistratos M and Dimitriadis K: Microvascular
complications of type 2 diabetes mellitus. Curr Vasc Pharmacol.
18:117–124. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Selby NM and Taal MW: An updated overview
of diabetic nephropathy: Diagnosis, prognosis, treatment goals and
latest guidelines. Diabetes Obes Metab. 22 (Suppl 1):S3–S15.
2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Huang QY, Lai XN, Qian XL, Lv LC, Li J,
Duan J, Xiao XH and Xiong LX: Cdc42: A novel regulator of insulin
secretion and diabetes-associated diseases. Int J Mol Sci.
20(179)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Tackenberg H, Moller S, Filippi MD and
Laskay T: The Small GTPase Cdc42 is a major regulator of neutrophil
effector functions. Front Immunol. 11(1197)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Moller LLV, Klip A and Sylow L: Rho
GTPases-Emerging regulators of glucose homeostasis and metabolic
health. Cells. 8(434)2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Xiao XH, Huang QY, Qian XL, Duan J, Jiao
XQ, Wu LY, Huang QY, Li J, Lai XN, Shi YB and Xiong LX: Cdc42
Promotes ADSC-Derived IPC induction, proliferation, and insulin
secretion via wnt/beta-catenin signaling. Diabetes Metab Syndr
Obes. 12:2325–2339. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Duan J, Qian XL, Li J, Xiao XH, Lu XT, Lv
LC, Huang QY, Ding W, Zhang HY and Xiong LX: miR-29a negatively
affects glucose-stimulated insulin secretion and MIN6 cell
proliferation via Cdc42/β-Catenin signaling. Int J Endocrinol.
2019(5219782)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
He XQ, Wang N, Zhao JJ, Wang D, Wang CJ,
Xie L, Zheng HY, Shi SZ, He J, Zhou J, et al: Specific deletion of
CDC42 in pancreatic beta cells attenuates glucose-induced insulin
expression and secretion in mice. Mol Cell Endocrinol.
518(111004)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Huang Z, Zhang L, Chen Y, Zhang H, Zhang
Q, Li R, Ma J, Li Z, Yu C, Lai Y, et al: Cdc42 deficiency induces
podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP
pathway. Cell Death Dis. 7(e2142)2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Jiang S, Xu CM, Yao S, Zhang R, Li XZ,
Zhang RZ, Xie TY, Xing YQ, Zhang Q, Zhou XJ, et al: Cdc42
upregulation under high glucose induces podocyte apoptosis and
impairs β-cell insulin secretion. Front Endocrinol (Lausanne).
13(905703)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
American Diabetes Association. Diagnosis
and classification of diabetes mellitus. Diabetes Care. 35 (Suppl
1):S64–S71. 2012.PubMed/NCBI View Article : Google Scholar
|
20
|
Levey AS, Stevens LA, Schmid CH, Zhang YL,
Castro AF III, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene
T, et al: A new equation to estimate glomerular filtration rate.
Ann Intern Med. 150:604–612. 2009.PubMed/NCBI View Article : Google Scholar
|
21
|
Tabur S, Oztuzcu S, Oguz E, Korkmaz H,
Eroglu S, Ozkaya M and Demiryurek AT: Association of Rho/Rho-kinase
gene polymorphisms and expressions with obesity-related metabolic
syndrome. Eur Rev Med Pharmacol Sci. 19:1680–1688. 2015.PubMed/NCBI
|
22
|
Rastogi D, Nico J, Johnston AD, Tobias
TAM, Jorge Y, Macian F and Greally JM: CDC42-related genes are
upregulated in helper T cells from obese asthmatic children. J
Allergy Clin Immunol. 141:539–548 e7. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Feng Q, Guo J, Hou A, Guo Z, Zhang Y, Guo
Y, Liu S, Cheng Z, Sun L, Meng L and Han S: The clinical role of
serum cell division control 42 in coronary heart disease. Scand J
Clin Lab Invest. 83:45–50. 2023.PubMed/NCBI View Article : Google Scholar
|
24
|
Ahmadian E, Eftekhari A, Atakishizada S,
Valiyeva M, Ardalan M, Khalilov R and Kavetskyy T: Podocytopathy:
The role of actin cytoskeleton. Biomed Pharmacother.
156(113920)2022.PubMed/NCBI View Article : Google Scholar
|
25
|
Sun Y, Cui S, Hou Y and Yi F: The updates
of podocyte lipid metabolism in proteinuric kidney disease. Kidney
Dis (Basel). 7:438–451. 2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Elias BC, Das A, Parekh DV, Mernaugh G,
Adams R, Yang Z, Brakebusch C, Pozzi A, Marciano DK, Carroll TJ and
Zent R: Cdc42 regulates epithelial cell polarity and cytoskeletal
function during kidney tubule development. J Cell Sci.
128:4293–4305. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Raij L, Tian R, Wong JS, He JC and
Campbell KN: Podocyte injury: The role of proteinuria, urinary
plasminogen, and oxidative stress. Am J Physiol Renal Physiol.
311:F1308–F1317. 2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Steichen C, Herve C, Hauet T and
Bourmeyster N: Rho GTPases in kidney physiology and diseases. Small
GTPases. 13:141–161. 2022.PubMed/NCBI View Article : Google Scholar
|
29
|
Choi SY, Chacon-Heszele MF, Huang L,
McKenna S, Wilson FP, Zuo X and Lipschutz JH: Cdc42 deficiency
causes ciliary abnormalities and cystic kidneys. J Am Soc Nephrol.
24:1435–1450. 2013.PubMed/NCBI View Article : Google Scholar
|
30
|
Nofer JR, Feuerborn R, Levkau B, Sokoll A,
Seedorf U and Assmann G: Involvement of Cdc42 signaling in
apoA-I-induced cholesterol efflux. J Biol Chem. 278:53055–53062.
2003.PubMed/NCBI View Article : Google Scholar
|
31
|
Cinar Y, Senyol AM and Duman K: Blood
viscosity and blood pressure: Role of temperature and
hyperglycemia. Am J Hypertens. 14 (5 Pt 1):433–438. 2001.PubMed/NCBI View Article : Google Scholar
|
32
|
Volpe A, Ye C, Hanley AJ, Connelly PW,
Zinman B and Retnakaran R: Changes over time in uric acid in
relation to changes in insulin sensitivity, beta-cell function, and
glycemia. J Clin Endocrinol Metab. 105:e651–e659. 2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Li Y, Yang W and Wang F: The relationship
of blood CDC42 level with Th1 cells, Th17 cells, inflammation
markers, disease risk/activity, and treatment efficacy of
rheumatoid arthritis. Ir J Med Sci. 191:2155–2161. 2022.PubMed/NCBI View Article : Google Scholar
|
34
|
Bai S, Zeng R, Zhou Q, Liao W, Zhang Y, Xu
C, Han M, Pei G, Liu L, Liu X, et al: Cdc42-interacting protein-4
promotes TGF-B1-induced epithelial-mesenchymal transition and
extracellular matrix deposition in renal proximal tubular
epithelial cells. Int J Biol Sci. 8:859–869. 2012.PubMed/NCBI View Article : Google Scholar
|
35
|
Lee YH, Kim KP, Kim YG, Moon JY, Jung SW,
Park E, Kim JS, Jeong KH, Lee TW, Ihm CG, et al:
Clinicopathological features of diabetic and nondiabetic renal
diseases in type 2 diabetic patients with nephrotic-range
proteinuria. Medicine (Baltimore). 96(e8047)2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Wada T, Shimizu M, Toyama T, Hara A,
Kaneko S and Furuichi K: Clinical impact of albuminuria in diabetic
nephropathy. Clin Exp Nephrol. 16:96–101. 2012.PubMed/NCBI View Article : Google Scholar
|
37
|
Blattner SM, Hodgin JB, Nishio M, Wylie
SA, Saha J, Soofi AA, Vining C, Randolph A, Herbach N, Wanke R, et
al: Divergent functions of the Rho GTPases Rac1 and Cdc42 in
podocyte injury. Kidney Int. 84:920–930. 2013.PubMed/NCBI View Article : Google Scholar
|
38
|
Rico-Fontalvo J, Aroca G, Cabrales J,
Daza-Arnedo R, Yanez-Rodriguez T, Martinez-Avila MC, Uparella-Gulfo
I and Raad-Sarabia M: Molecular mechanisms of diabetic kidney
disease. Int J Mol Sci. 23(8668)2022.PubMed/NCBI View Article : Google Scholar
|
39
|
Samsu N: Diabetic nephropathy: Challenges
in pathogenesis, diagnosis, and treatment. Biomed Res Int.
2021(1497449)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Jia Y, Zheng Z, Xue M, Zhang S, Hu F, Li
Y, Yang Y, Zou M, Li S, Wang L, et al: Extracellular vesicles from
albumin-induced tubular epithelial cells promote the M1 macrophage
phenotype by targeting klotho. Mol Ther. 27:1452–1466.
2019.PubMed/NCBI View Article : Google Scholar
|