Role and targeting of the AGC kinase family in pulmonary fibrosis (Review)
- Authors:
- Chao Mei
- Tao Chen
- Xiangfei Huang
- Chenlu Xiong
- Shibiao Chen
- Yong Li
-
Affiliations: Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: March 8, 2024 https://doi.org/10.3892/etm.2024.12478
- Article Number: 190
This article is mentioned in:
Abstract
Noble PW, Barkauskas CE and Jiang D: Pulmonary fibrosis: Patterns and perpetrators. J Clin Invest. 122:2756–2762. 2012.PubMed/NCBI View Article : Google Scholar | |
Kreuter M, Ladner UM, Costabel U, Jonigk D and Heussel CP: The diagnosis and treatment of pulmonary fibrosis. Dtsch Arztebl Int. 118:152–162. 2021.PubMed/NCBI View Article : Google Scholar | |
Richeldi L, Collard HR and Jones MG: Idiopathic pulmonary fibrosis. Lancet. 389:1941–1952. 2017.PubMed/NCBI View Article : Google Scholar | |
Günther A, Korfei M, Mahavadi P, von der Beck D, Ruppert C and Markart P: Unravelling the progressive pathophysiology of idiopathic pulmonary fibrosis. Eur Respir Rev. 21:152–160. 2012.PubMed/NCBI View Article : Google Scholar | |
Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, et al: An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 183:788–824. 2011.PubMed/NCBI View Article : Google Scholar | |
Lederer DJ and Martinez FJ: Idiopathic pulmonary fibrosis. N Engl J Med. 378:1811–1823. 2018.PubMed/NCBI View Article : Google Scholar | |
Abuserewa ST, Duff R and Becker G: Treatment of idiopathic pulmonary fibrosis. Cureus. 13(e15360)2021.PubMed/NCBI View Article : Google Scholar | |
Khor YH: Antifibrotic therapy for idiopathic pulmonary fibrosis: Combining real world and clinical trials for totality of evidence. Chest. 160:1589–1591. 2021.PubMed/NCBI View Article : Google Scholar | |
Desai O, Winkler J, Minasyan M and Herzog EL: The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med (Lausanne). 5(43)2018.PubMed/NCBI View Article : Google Scholar | |
Fujimoto H, Kobayashi T and Azuma A: Idiopathic pulmonary fibrosis: Treatment and prognosis. Clin Med Insights Circ Respir Pulm Med. 9 (Suppl 1):S179–S185. 2016.PubMed/NCBI View Article : Google Scholar | |
Selman M and Pardo A: The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal. 66(109482)2020.PubMed/NCBI View Article : Google Scholar | |
Tu M, Wei T, Jia Y, Wang Y and Wu J: Molecular mechanisms of alveolar epithelial cell senescence and idiopathic pulmonary fibrosis: A narrative review. J Thorac Dis. 15:186–203. 2023.PubMed/NCBI View Article : Google Scholar | |
Katzen J and Beers MF: Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest. 130:5088–5099. 2020.PubMed/NCBI View Article : Google Scholar | |
Parimon T, Yao C, Stripp BR, Noble PW and Chen P: Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci. 21(2269)2020.PubMed/NCBI View Article : Google Scholar | |
Zhu W, Tan C and Zhang J: Alveolar epithelial type 2 cell dysfunction in idiopathic pulmonary fibrosis. Lung. 200:539–547. 2022.PubMed/NCBI View Article : Google Scholar | |
Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, Calvi CL, Peter L, Chung MI, Taylor CJ, Jetter C, et al: Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 6(eaba1972)2020.PubMed/NCBI View Article : Google Scholar | |
Manning G, Whyte DB, Martinez R, Hunter T and Sudarsanam S: The protein kinase complement of the human genome. Science. 298:1912–1934. 2002.PubMed/NCBI View Article : Google Scholar | |
Roskoski R Jr: A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res. 100:1–23. 2015.PubMed/NCBI View Article : Google Scholar | |
Deribe YL, Pawson T and Dikic I: Post-translational modifications in signal integration. Nat Struct Mol Biol. 17:666–672. 2010.PubMed/NCBI View Article : Google Scholar | |
Attwood MM, Fabbro D, Sokolov AV, Knapp S and Schiöth HB: Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat Rev Drug Discov. 20:839–861. 2021.PubMed/NCBI View Article : Google Scholar | |
Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO and Biondi RM: AGC protein kinases: From structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim Biophys Acta. 1834:1302–1321. 2013.PubMed/NCBI View Article : Google Scholar | |
Leroux AE, Schulze JO and Biondi RM: AGC kinases, mechanisms of regulation and innovative drug development. Semin Cancer Biol. 48:1–17. 2018.PubMed/NCBI View Article : Google Scholar | |
Rath N and Olson MF: Rho-associated kinases in tumorigenesis: Re-considering ROCK inhibition for cancer therapy. EMBO Rep. 13:900–908. 2012.PubMed/NCBI View Article : Google Scholar | |
Turnham RE and Scott JD: Protein kinase A catalytic subunit isoform PRKACA; history, function and physiology. Gene. 577:101–108. 2016.PubMed/NCBI View Article : Google Scholar | |
Pearce LR, Komander D and Alessi DR: The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 11:9–22. 2010.PubMed/NCBI View Article : Google Scholar | |
Zheng J, Knighton DR, ten Eyck LF, Karlsson R, Xuong N, Taylor SS and Sowadski JM: Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 32:2154–2161. 1993.PubMed/NCBI View Article : Google Scholar | |
Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA and Alessi DR: Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. 19:979–988. 2000.PubMed/NCBI View Article : Google Scholar | |
Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR and van Aalten DM: High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 21:4219–4228. 2002.PubMed/NCBI View Article : Google Scholar | |
Zhang Y and McCormick S: AGCVIII kinases: At the crossroads of cellular signaling. Trends Plant Sci. 14:689–695. 2009.PubMed/NCBI View Article : Google Scholar | |
Sobko A: Systems biology of AGC kinases in fungi. Sci STKE. 2006(re9)2006.PubMed/NCBI View Article : Google Scholar | |
Lanassa Bassukas AE, Xiao Y and Schwechheimer C: Phosphorylation control of PIN auxin transporters. Curr Opin Plant Biol. 65(102146)2022.PubMed/NCBI View Article : Google Scholar | |
Jiang Y, Liu X, Zhou M, Yang J, Ke S and Li Y: Genome-wide identification of the AGC protein kinase gene family related to photosynthesis in rice (Oryza sativa). Int J Mol Sci. 23(12557)2022.PubMed/NCBI View Article : Google Scholar | |
Glanc M, Van Gelderen K, Hoermayer L, Tan S, Naramoto S, Zhang X, Domjan D, Včelařová L, Hauschild R, Johnson A, et al: AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Curr Biol. 31:1918–1930.e5. 2021.PubMed/NCBI View Article : Google Scholar | |
Wick KL and Liu F: A new molecular target of insulin action: Regulating the pivotal PDK1. Curr Drug Targets Immune Endocr Metabol Disord. 1:209–221. 2001.PubMed/NCBI View Article : Google Scholar | |
Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB and Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 7:261–269. 1997.PubMed/NCBI View Article : Google Scholar | |
Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F and Hawkins PT: Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science. 277:567–570. 1997.PubMed/NCBI View Article : Google Scholar | |
Dittrich ACN and Devarenne TP: Perspectives in PDK1 evolution: Insights from photosynthetic and non-photosynthetic organisms. Plant Signal Behav. 7:642–649. 2012.PubMed/NCBI View Article : Google Scholar | |
Scheid MP, Parsons M and Woodgett JR: Phosphoinositide-dependent phosphorylation of PDK1 regulates nuclear translocation. Mol Cell Biol. 25:2347–2363. 2005.PubMed/NCBI View Article : Google Scholar | |
Gagliardi PA, di Blasio L and Primo L: PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta. 1856:178–188. 2015.PubMed/NCBI View Article : Google Scholar | |
Cohen P, Alessi DR and Cross DA: PDK1, one of the missing links in insulin signal transduction? FEBS Lett. 410:3–10. 1997.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Guo Y, Ran M, Shan W, Granchi C, Giovannetti E, Minutolo F, Peters GJ and Tam KY: Combined inhibition of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase a induces metabolic and signaling reprogramming and enhances lung adenocarcinoma cell killing. Cancer Lett. 577(216425)2023.PubMed/NCBI View Article : Google Scholar | |
Feng Q, Di R, Tao F, Chang Z, Lu S, Fan W, Shan C, Li X and Yang Z: PDK1 regulates vascular remodeling and promotes epithelial-mesenchymal transition in cardiac development. Mol Cell Biol. 30:3711–3721. 2010.PubMed/NCBI View Article : Google Scholar | |
Lawlor MA, Mora A, Ashby PR, Williams MR, Murray-Tait V, Malone L, Prescott AR, Lucocq JM and Alessi DR: Essential role of PDK1 in regulating cell size and development in mice. EMBO J. 21:3728–3738. 2002.PubMed/NCBI View Article : Google Scholar | |
Pietri M, Dakowski C, Hannaoui S, Alleaume-Butaux A, Hernandez-Rapp J, Ragagnin A, Mouillet-Richard S, Haik S, Bailly Y, Peyrin JM, et al: PDK1 decreases TACE-mediated α-secretase activity and promotes disease progression in prion and Alzheimer's diseases. Nat Med. 19:1124–1131. 2013.PubMed/NCBI View Article : Google Scholar | |
Hashimoto N, Kido Y, Uchida T, Asahara S, Shigeyama Y, Matsuda T, Takeda A, Tsuchihashi D, Nishizawa A, Ogawa W, et al: Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet. 38:589–593. 2006.PubMed/NCBI View Article : Google Scholar | |
Choucair KA, Guérard KP, Ejdelman J, Chevalier S, Yoshimoto M, Scarlata E, Fazli L, Sircar K, Squire JA, Brimo F, et al: The 16p13.3 (PDPK1) genomic gain in prostate cancer: A potential role in disease progression. Transl Oncol. 5:453–460. 2012.PubMed/NCBI View Article : Google Scholar | |
Maurer M, Su T, Saal LH, Koujak S, Hopkins BD, Barkley CR, Wu J, Nandula S, Dutta B, Xie Y, et al: 3-Phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma. Cancer Res. 69:6299–6306. 2009.PubMed/NCBI View Article : Google Scholar | |
Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006.PubMed/NCBI View Article : Google Scholar | |
Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3:187–197. 2006.PubMed/NCBI View Article : Google Scholar | |
Li J, Zhai X, Sun X, Cao S, Yuan Q and Wang J: Metabolic reprogramming of pulmonary fibrosis. Front Pharmacol. 13(1031890)2022.PubMed/NCBI View Article : Google Scholar | |
Hamanaka RB and Mutlu GM: Metabolic requirements of pulmonary fibrosis: Role of fibroblast metabolism. FEBS J. 288:6331–6352. 2021.PubMed/NCBI View Article : Google Scholar | |
Henderson J and O'Reilly S: The emerging role of metabolism in fibrosis. Trends Endocrinol Metab. 32:639–653. 2021.PubMed/NCBI View Article : Google Scholar | |
Goodwin J, Choi H, Hsieh MH, Neugent ML, Ahn JM, Hayenga HN, Singh PK, Shackelford DB, Lee IK, Shulaev V, et al: Targeting hypoxia-inducible factor-1α/pyruvate dehydrogenase kinase 1 axis by dichloroacetate suppresses bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 58:216–231. 2018.PubMed/NCBI View Article : Google Scholar | |
Stacpoole PW: Review of the pharmacologic and therapeutic effects of diisopropylammonium dichloroacetate (DIPA). J Clin Pharmacol J New Drugs. 9:282–291. 1969.PubMed/NCBI | |
Stacpoole PW, Kurtz TL, Han Z and Langaee T: Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv Drug Deliv Rev. 60:1478–1487. 2008.PubMed/NCBI View Article : Google Scholar | |
Yang K, Li B and Chen J: Knockdown of phosphoinositide-dependent kinase 1 (PDK1) inhibits fibrosis and inflammation in lipopolysaccharide-induced acute lung injury rat model by attenuating NF-κB/p65 pathway activation. Ann Transl Med. 9(1671)2021.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Xie X, Wang P, Luo J, Chen Y, Xu Q, Zhou J, Lu X, Zhao J, Chen Z and Zuo D: Mannan-binding lectin reduces epithelial-mesenchymal transition in pulmonary fibrosis via inactivating the store-operated calcium entry machinery. J Innate Immun. 15:37–49. 2023.PubMed/NCBI View Article : Google Scholar | |
Loirand G, Guérin P and Pacaud P: Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 98:322–334. 2006.PubMed/NCBI View Article : Google Scholar | |
Shimizu Y, Dobashi K, Iizuka K, Horie T, Suzuki K, Tukagoshi H, Nakazawa T, Nakazato Y and Mori M: Contribution of small GTPase Rho and its target protein rock in a murine model of lung fibrosis. Am J Respir Crit Care Med. 163:210–217. 2001.PubMed/NCBI View Article : Google Scholar | |
Barcelo J, Samain R and Sanz-Moreno V: Preclinical to clinical utility of ROCK inhibitors in cancer. Trends Cancer. 9:250–263. 2023.PubMed/NCBI View Article : Google Scholar | |
Shimokawa H and Takeshita A: Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 25:1767–1775. 2005.PubMed/NCBI View Article : Google Scholar | |
Knipe RS, Tager AM and Liao JK: The Rho kinases: Critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev. 67:103–117. 2015.PubMed/NCBI View Article : Google Scholar | |
Jiang C, Huang H, Liu J, Wang Y, Lu Z and Xu Z: Fasudil, a Rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci. 13:8293–8307. 2012.PubMed/NCBI View Article : Google Scholar | |
Shimizu Y, Dobashi K, Sano T and Yamada M: ROCK activation in lung of idiopathic pulmonary fibrosis with oxidative stress. Int J Immunopathol Pharmacol. 27:37–44. 2014.PubMed/NCBI View Article : Google Scholar | |
Ghatak S, Hascall VC, Markwald RR, Feghali-Bostwick C, Artlett CM, Gooz M, Bogatkevich GS, Atanelishvili I, Silver RM, Wood J, et al: Transforming growth factor β1 (TGFβ1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem. 292:10490–10519. 2017.PubMed/NCBI View Article : Google Scholar | |
Fu S, Wen Y, Peng B, Tang M, Shi M, Liu J, Yang Y, Si W, Guo Y, Li X, et al: Discovery of indoline-based derivatives as effective ROCK2 inhibitors for the potential new treatment of idiopathic pulmonary fibrosis. Bioorg Chem. 137(106539)2023.PubMed/NCBI View Article : Google Scholar | |
Wu X, Verschut V, Woest ME, Ng-Blichfeldt JP, Matias A, Villetti G, Accetta A, Facchinetti F, Gosens R and Kistemaker LEM: Rho-kinase 1/2 inhibition prevents transforming growth factor-β-induced effects on pulmonary remodeling and repair. Front Pharmacol. 11(609509)2021.PubMed/NCBI View Article : Google Scholar | |
Hong AW, Meng Z and Guan KL: The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol. 13:324–337. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu Z and Guan KL: Hippo signaling in embryogenesis and development. Trends Biochem Sci. 46:51–63. 2021.PubMed/NCBI View Article : Google Scholar | |
Landry NM, Rattan SG, Filomeno KL, Meier TW, Meier SC, Foran SJ, Meier CF, Koleini N, Fandrich RR, Kardami E, et al: SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation. Basic Res Cardiol. 116(25)2021.PubMed/NCBI View Article : Google Scholar | |
Dong L and Li L: Lats2-underexpressing bone marrow-derived mesenchymal stem cells ameliorate LPS-induced acute lung injury in mice. Mediators Inflamm. 2019(4851431)2019.PubMed/NCBI View Article : Google Scholar | |
Antebi B, Walker KP III, Mohammadipoor A, Rodriguez LA, Montgomery RK, Batchinsky AI and Cancio LC: The effect of acute respiratory distress syndrome on bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther. 9(251)2018.PubMed/NCBI View Article : Google Scholar | |
Kuwano K, Miyazaki H, Hagimoto N, Kawasaki M, Fujita M, Kunitake R, Kaneko Y and Hara N: The involvement of Fas-Fas ligand pathway in fibrosing lung diseases. Am J Respir Cell Mol Biol. 20:53–60. 1999.PubMed/NCBI View Article : Google Scholar | |
Cai SX, Liu AR, Chen S, He HL, Chen QH, Xu JY, Pan C, Yang Y, Guo FM, Huang YZ, et al: The orphan receptor tyrosine kinase ROR2 facilitates MSCs to repair lung injury in ARDS animal model. Cell Transplant. 25:1561–1574. 2016.PubMed/NCBI View Article : Google Scholar | |
Han J, Lu X, Zou L, Xu X and Qiu H: E-prostanoid 2 receptor overexpression promotes mesenchymal stem cell attenuated lung injury. Hum Gene Ther. 27:621–630. 2016.PubMed/NCBI View Article : Google Scholar | |
Fernández-Hernando C, Ackah E, Yu J, Suárez Y, Murata T, Iwakiri Y, Prendergast J, Miao RQ, Birnbaum MJ and Sessa WC: Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab. 6:446–457. 2007.PubMed/NCBI View Article : Google Scholar | |
Iliopoulos D, Polytarchou C, Hatziapostolou M, Kottakis F, Maroulakou IG, Struhl K and Tsichlis PN: MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells. Sci Signal. 2(ra62)2009.PubMed/NCBI View Article : Google Scholar | |
Revathidevi S and Munirajan AK: Akt in cancer: Mediator and more. Semin Cancer Biol. 59:80–91. 2019.PubMed/NCBI View Article : Google Scholar | |
Risso G, Blaustein M, Pozzi B, Mammi P and Srebrow A: Akt/PKB: One kinase, many modifications. Biochem J. 468:203–214. 2015.PubMed/NCBI View Article : Google Scholar | |
Toker A and Yoeli-Lerner M: Akt signaling and cancer: Surviving but not moving on. Cancer Res. 66:3963–3966. 2006.PubMed/NCBI View Article : Google Scholar | |
Wang J, Hu K, Cai X, Yang B, He Q, Wang J and Weng Q: Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B. 12:18–32. 2022.PubMed/NCBI View Article : Google Scholar | |
Virtakoivu R, Pellinen T, Rantala JK, Perälä M and Ivaska J: Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer. Mol Biol Cell. 23:3357–3369. 2012.PubMed/NCBI View Article : Google Scholar | |
Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, Danino M, Karlan BY and Slamon DJ: Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 63:196–206. 2003.PubMed/NCBI | |
Baek ST, Copeland B, Yun EJ, Kwon SK, Guemez-Gamboa A, Schaffer AE, Kim S, Kang HC, Song S, Mathern GW and Gleeson JG: An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development. Nat Med. 21:1445–1454. 2015.PubMed/NCBI View Article : Google Scholar | |
Kang HR, Lee CG, Homer RJ and Elias JA: Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med. 204:1083–1093. 2007.PubMed/NCBI View Article : Google Scholar | |
Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z and Thannickal VJ: Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal. 19:761–771. 2007.PubMed/NCBI View Article : Google Scholar | |
Nie Y, Sun L, Wu Y, Yang Y, Wang J, He H, Hu Y, Chang Y, Liang Q, Zhu J, et al: AKT2 regulates pulmonary inflammation and fibrosis via modulating macrophage activation. J Immunol. 198:4470–4480. 2017.PubMed/NCBI View Article : Google Scholar | |
Larson-Casey JL, Deshane JS, Ryan AJ, Thannickal VJ and Carter AB: Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity. 44:582–596. 2016.PubMed/NCBI View Article : Google Scholar | |
Nie Y, Hu Y, Yu K, Zhang D, Shi Y, Li Y, Sun L and Qian F: Akt1 regulates pulmonary fibrosis via modulating IL-13 expression in macrophages. Innate Immun. 25:451–461. 2019.PubMed/NCBI View Article : Google Scholar | |
Kazanietz MG and Cooke M: Protein kinase C signaling ‘in’ and ‘to’ the nucleus: Master kinases in transcriptional regulation. J Biol Chem: 105692, 2024 (Epub ahead of print). | |
Silnitsky S, Rubin SJS, Zerihun M and Qvit N: An update on protein kinases as therapeutic targets-part I: Protein kinase C activation and its role in cancer and cardiovascular diseases. Int J Mol Sci. 24(17600)2023.PubMed/NCBI View Article : Google Scholar | |
Kang JH, Toita R, Kim CW and Katayama Y: Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv. 30:1662–1672. 2012.PubMed/NCBI View Article : Google Scholar | |
Abe MK, Kartha S, Karpova AY, Li J, Liu PT, Kuo WL and Hershenson MB: Hydrogen peroxide activates extracellular signal-regulated kinase via protein kinase C, Raf-1, and MEK1. Am J Respir Cell Mol Biol. 18:562–569. 1998.PubMed/NCBI View Article : Google Scholar | |
Barman SA: Potassium channels modulate canine pulmonary vasoreactivity to protein kinase C activation. Am J Physiol. 277:L558–L565. 1999.PubMed/NCBI View Article : Google Scholar | |
Das M, Stenmark KR, Ruff LJ and Dempsey EC: Selected isozymes of PKC contribute to augmented growth of fetal and neonatal bovine PA adventitial fibroblasts. Am J Physiol. 273:L1276–L1284. 1997.PubMed/NCBI View Article : Google Scholar | |
Harrington EO, Löffler J, Nelson PR, Kent KC, Simons M and Ware JA: Enhancement of migration by protein kinase Calpha and inhibition of proliferation and cell cycle progression by protein kinase Cdelta in capillary endothelial cells. J Biol Chem. 272:7390–7397. 1997.PubMed/NCBI View Article : Google Scholar | |
Wang J, Sun L, Nie Y, Duan S, Zhang T, Wang W, Ye RD, Hou S and Qian F: Protein kinase C δ (PKCδ) attenuates bleomycin induced pulmonary fibrosis via inhibiting NF-κB signaling pathway. Front Physiol. 11(367)2020.PubMed/NCBI View Article : Google Scholar | |
Jimenez SA, Gaidarova S, Saitta B, Sandorfi N, Herrich DJ, Rosenbloom JC, Kucich U, Abrams WR and Rosenbloom J: Role of protein kinase C-delta in the regulation of collagen gene expression in scleroderma fibroblasts. J Clin Invest. 108:1395–1403. 2001.PubMed/NCBI View Article : Google Scholar | |
Song JS, Kang CM, Park CK and Yoon HK: Thrombin induces epithelial-mesenchymal transition via PAR-1, PKC, and ERK1/2 pathways in A549 cells. Exp Lung Res. 39:336–348. 2013.PubMed/NCBI View Article : Google Scholar | |
Barosova H, Meldrum K, Karakocak BB, Balog S, Doak SH, Petri-Fink A, Clift MJD and Rothen-Rutishauser B: Inter-laboratory variability of A549 epithelial cells grown under submerged and air-liquid interface conditions. Toxicol In Vitro. 75(105178)2021.PubMed/NCBI View Article : Google Scholar | |
McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Dorfman AL, Longnus S, Pende M, Martin KA, Blenis J, et al: Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin-like growth factor 1 receptor-phosphoinositide 3-kinase-induced cardiac hypertrophy. Mol Cell Biol. 24:6231–6240. 2004.PubMed/NCBI View Article : Google Scholar | |
Ludwik KA and Lannigan DA: Ribosomal S6 kinase (RSK) modulators: A patent review. Expert Opin Ther Pat. 26:1061–1078. 2016.PubMed/NCBI View Article : Google Scholar | |
Shima H, Pende M, Chen Y, Fumagalli S, Thomas G and Kozma SC: Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 17:6649–6659. 1998.PubMed/NCBI View Article : Google Scholar | |
Magnuson B, Ekim B and Fingar DC: Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 441:1–21. 2012.PubMed/NCBI View Article : Google Scholar | |
Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA and Thomas G: Phosphorylation and activation of p70s6k by PDK1. Science. 279:707–710. 1998.PubMed/NCBI View Article : Google Scholar | |
Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N and Blenis J: RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 282:14056–14064. 2007.PubMed/NCBI View Article : Google Scholar | |
Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J and Rozengurt E: Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One. 8(e57289)2013.PubMed/NCBI View Article : Google Scholar | |
Frödin M and Gammeltoft S: Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol. 151:65–77. 1999.PubMed/NCBI View Article : Google Scholar | |
Madala SK, Thomas G, Edukulla R, Davidson C, Schmidt S, Schehr A and Hardie WD: p70 ribosomal S6 kinase regulates subpleural fibrosis following transforming growth factor-α expression in the lung. Am J Physiol Lung Cell Mol Physiol. 310:L175–L186. 2016.PubMed/NCBI View Article : Google Scholar | |
Han Q, Lin L, Zhao B, Wang N and Liu X: Inhibition of mTOR ameliorates bleomycin-induced pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biochem Biophys Res Commun. 500:839–845. 2018.PubMed/NCBI View Article : Google Scholar | |
Zou W, Zhang X, Zhao M, Zhou Q and Hu X: Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. Nanotoxicology. 11:781–793. 2017.PubMed/NCBI View Article : Google Scholar | |
Kim S, Han JH, Kim S, Lee H, Kim JR, Lim JH and Woo CH: p90RSK inhibition ameliorates TGF-β1 signaling and pulmonary fibrosis by inhibiting smad3 transcriptional activity. Cell Physiol Biochem. 54:195–210. 2020.PubMed/NCBI View Article : Google Scholar | |
Jia S, Agarwal M, Yang J, Horowitz JC, White ES and Kim KK: Discoidin domain receptor 2 signaling regulates fibroblast apoptosis through PDK1/Akt. Am J Respir Cell Mol Biol. 59:295–305. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang L, Li Z, Wan R, Pan X, Li B, Zhao H, Yang J, Zhao W, Wang S, Wang Q, et al: Single-cell RNA sequencing provides new insights into therapeutic roles of thyroid hormone in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 69:456–469. 2023.PubMed/NCBI View Article : Google Scholar | |
Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, Chu SG, Raby BA, DeIuliis G, Januszyk M, et al: Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 6(eaba1983)2020.PubMed/NCBI View Article : Google Scholar | |
Yang L, Gilbertsen A, Smith K, Xia H, Higgins L, Guerrero C and Henke CA: Proteomic analysis of the IPF mesenchymal progenitor cell nuclear proteome identifies abnormalities in key nodal proteins that underlie their fibrogenic phenotype. Proteomics. 22(e2200018)2022.PubMed/NCBI View Article : Google Scholar |