1
|
Pan J, Lu L, Wang X, Liu D, Tian J, Liu H,
Zhang M, Xu F and An F: AIM2 regulates vascular smooth muscle cell
migration in atherosclerosis. Biochem Biophys Res Commun.
497:401–409. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Hines JT, Jo WL, Cui Q, Mont MA, Koo KH,
Cheng EY, Goodman SB, Ha YC, Hernigou P, Jones LC, et al:
Osteonecrosis of the femoral head: An updated review of ARCO on
pathogenesis, staging and treatment. J Korean Med Sci.
36(e177)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Ando W, Sakai T, Fukushima W, Kaneuji A,
Ueshima K, Yamasaki T, Yamamoto T and Nishii T: Working group for
ONFH guidelines and Sugano N. Japanese orthopaedic association 2019
guidelines for osteonecrosis of the femoral head. J Orthop Sci.
26:46–68. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Watanabe M and Hatakeyama S: TRIM proteins
and diseases. J Biochem. 161:135–144. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Jones EL, Laidlaw SM and Dustin LB:
TRIM21/Ro52-roles in innate immunity and autoimmune disease. Front
Immunol. 12(738473)2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Ben-Chetrit E, Chan EK, Sullivan KF and
Tan EM: A 52-kD protein is a novel component of the SS-A/Ro
antigenic particle. J Exp Med. 167:1560–1571. 1988.PubMed/NCBI View Article : Google Scholar
|
7
|
Ben-Chetrit E, Fox RI and Tan EM:
Dissociation of immune responses to the SS-A (Ro) 52 and 60-kd
polypeptides in systemic lupus erythematosus and Sjögren's
syndrome. Arthritis Rheum. 33:349–355. 1990.PubMed/NCBI View Article : Google Scholar
|
8
|
Xian J, Liang D, Zhao C, Chen Y and Zhu Q:
TRIM21 inhibits the osteogenic differentiation of mesenchymal stem
cells by facilitating K48 ubiquitination-mediated degradation of
Akt. Exp Cell Res. 412(113034)2022.PubMed/NCBI View Article : Google Scholar
|
9
|
Ulasov AV, Rosenkranz AA, Georgiev GP and
Sobolev AS: Nrf2/Keap1/ARE signaling: Towards specific regulation.
Life Sci. 291(120111)2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M,
Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell
proliferation and diminishes ferroptosis. Oncogenesis.
6(e371)2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Song MY, Lee DY, Chun KS and Kim EH: The
role of NRF2/KEAP1 signaling pathway in cancer metabolism. Int J
Mol Sci. 22(4376)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Yang N, Sun H, Xue Y, Zhang W, Wang H, Tao
H, Liang X, Li M, Xu Y, Chen L, et al: Inhibition of MAGL activates
the Keap1/Nrf2 pathway to attenuate glucocorticoid-induced
osteonecrosis of the femoral head. Clin Transl Med.
11(e447)2021.PubMed/NCBI View
Article : Google Scholar
|
13
|
Wang F, Zhang Y, Shen J, Yang B, Dai W,
Yan J, Maimouni S, Daguplo HQ, Coppola S, Gao Y, et al: The
ubiquitin E3 ligase TRIM21 promotes hepatocarcinogenesis by
suppressing the p62-Keap1-Nrf2 antioxidant pathway. Cell Mol
Gastroenterol Hepatol. 11:1369–1385. 2021.PubMed/NCBI View Article : Google Scholar
|
14
|
Han D, Gu X, Gao J, Wang Z, Liu G, Barkema
HW and Han B: Chlorogenic acid promotes the Nrf2/HO-1
anti-oxidative pathway by activating
p21Waf1/Cip1 to resist
dexamethasone-induced apoptosis in osteoblastic cells. Free Radic
Biol Med. 137:1–12. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S,
Liu J, Wang X, Fan X and Dong Z: β-Caryophyllene suppresses
ferroptosis induced by cerebral ischemia reperfusion via activation
of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine.
102(154112)2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
17
|
Suzuki T, Takahashi J and Yamamoto M:
Molecular basis of the KEAP1-NRF2 signaling pathway. Mol Cells.
46:133–141. 2023.PubMed/NCBI View Article : Google Scholar
|
18
|
Lu Z and Han K: SMAD4 transcriptionally
activates GCN5 to inhibit apoptosis and promote osteogenic
differentiation in dexamethasone-induced human bone marrow
mesenchymal stem cells. Steroids. 179(108969)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Palekar G: Hip preservation with
autologous osteoblast cell-based treatment in osteonecrosis of the
femoral head. Orthopedics. 44:e183–e189. 2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Kerachian MA, Séguin C and Harvey EJ:
Glucocorticoids in osteonecrosis of the femoral head: A new
understanding of the mechanisms of action. J Steroid Biochem Mol
Biol. 114:121–128. 2009.PubMed/NCBI View Article : Google Scholar
|
21
|
Fang L, Zhang G, Wu Y, Li Z, Gao S and
Zhou L: SIRT6 prevents glucocorticoid-induced osteonecrosis of the
femoral head in rats. Oxid Med Cell Longev.
2022(6360133)2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Sun F, Zhou JL, Wei SX, Jiang ZW and Peng
H: Glucocorticoids induce osteonecrosis of the femoral head in rats
via PI3K/AKT/FOXO1 signaling pathway. PeerJ.
10(e13319)2022.PubMed/NCBI View Article : Google Scholar
|
23
|
Peng P, Nie Z, Sun F and Peng H:
Glucocorticoids induce femoral head necrosis in rats through the
ROS/JNK/c-Jun pathway. FEBS Open Bio. 11:312–321. 2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Deng S, Dai G, Chen S, Nie Z, Zhou J, Fang
H and Peng H: Dexamethasone induces osteoblast apoptosis through
ROS-PI3K/AKT/GSK3β signaling pathway. Biomed Pharmacother.
110:602–608. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhou M, Liu L, Xu Y, Jiang J, Liu G and
Zhai C: Effects of osteoblast autophagy on glucocorticoid-induced
femoral head necrosis. Jt Dis Relat Surg. 31:411–418.
2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Alomari M: TRIM21-a potential novel
therapeutic target in cancer. Pharmacol Res.
165(105443)2021.PubMed/NCBI View Article : Google Scholar
|
27
|
Kimura T, Jain A, Choi SW, Mandell MA,
Schroder K, Johansen T and Deretic V: TRIM-mediated precision
autophagy targets cytoplasmic regulators of innate immunity. J Cell
Biol. 210:973–989. 2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Liu RX, Gu RH, Li ZP, Hao ZQ, Hu QX, Li
ZY, Wang XG, Tang W, Wang XH, Zeng YK, et al: Trim21 depletion
alleviates bone loss in osteoporosis via activation of
YAP1/β-catenin signaling. Bone Res. 11(56)2023.PubMed/NCBI View Article : Google Scholar
|
29
|
Nie Z, Chen S and Peng H: Glucocorticoid
induces osteonecrosis of the femoral head in rats through
GSK3β-mediated osteoblast apoptosis. Biochem. Biophys Res Commun.
511:693–699. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Mutijima E, De Maertelaer V, Deprez M,
Malaise M and Hauzeur JP: The apoptosis of osteoblasts and
osteocytes in femoral head osteonecrosis: Its specificity and its
distribution. Clin Rheumatol. 33:1791–1795. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Guo S, Mao L, Ji F, Wang S, Xie Y, Fei H
and Wang XD: Activating AMP-activated protein kinase by an α1
selective activator compound 13 attenuates dexamethasone-induced
osteoblast cell death. Biochem Biophys Res Commun. 471:545–552.
2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Sun F, Zhou JL, Liu ZL, Jiang ZW and Peng
H: Dexamethasone induces ferroptosis via P53/SLC7A11/GPX4 pathway
in glucocorticoid-induced osteonecrosis of the femoral head.
Biochem Biophys Res Commun. 602:149–155. 2022.PubMed/NCBI View Article : Google Scholar
|
33
|
Yang YH, Li B, Zheng XF, Chen JW, Chen K,
Jiang SD and Jiang LS: Oxidative damage to osteoblasts can be
alleviated by early autophagy through the endoplasmic reticulum
stress pathway-implications for the treatment of osteoporosis. Free
Radic Biol Med. 77:10–20. 2014.PubMed/NCBI View Article : Google Scholar
|
34
|
Deng S, Zhou JL, Fang HS, Nie ZG, Chen S
and Peng H: Sesamin protects the femoral head from osteonecrosis by
inhibiting ROS-induced osteoblast apoptosis in rat model. Front
Physiol. 9(1787)2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Zheng J, Chang L, Bao X, Zhang X, Li C and
Deng L: TRIM21 drives intervertebral disc degeneration induced by
oxidative stress via mediating HIF-1α degradation. Biochem Biophys
Res Commun. 555:46–53. 2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Liu X, Zhang W, Luo J, Shi W, Zhang X, Li
Z, Qin X, Liu B and Wei Y: TRIM21 deficiency protects against
atrial inflammation and remodeling post myocardial infarction by
attenuating oxidative stress. Redox Biol. 62(102679)2023.PubMed/NCBI View Article : Google Scholar
|
37
|
Bharadwaz A and Jayasuriya AC: Osteogenic
differentiation cues of the bone morphogenetic protein-9 (BMP-9)
and its recent advances in bone tissue regeneration. Mater Sci Eng
C Mater Biol Appl. 120(111748)2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Tingart M, Beckmann J, Opolka A, Matsuura
M, Wiech O, Grifka J and Grässel S: Influence of factors regulating
bone formation and remodeling on bone quality in osteonecrosis of
the femoral head. Calcif Tissue Int. 82:300–308. 2008.PubMed/NCBI View Article : Google Scholar
|
39
|
Halloran D, Durbano HW and Nohe A: Bone
morphogenetic protein-2 in development and bone homeostasis. J Dev
Biol. 8(19)2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Liu DD, Zhang CY, Liu Y, Li J, Wang YX and
Zheng SG: RUNX2 regulates osteoblast differentiation via the BMP4
signaling pathway. J Dent Res. 101:1227–1237. 2022.PubMed/NCBI View Article : Google Scholar
|
41
|
Han Y, Kim YM, Kim HS and Lee KY:
Melatonin promotes osteoblast differentiation by regulating osterix
protein stability and expression. Sci Rep. 7(5716)2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Baird L and Yamamoto M: The molecular
mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol.
40:e00099–20. 2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Li X, Yu X, He S and Li J: Dipeptidyl
peptidase 3 is essential for maintaining osteoblastic
differentiation under a high-glucose environment by inhibiting
apoptosis, oxidative stress and inflammation through the modulation
of the Keap1-Nrf2 pathway. Int Immunopharmacol.
120(110404)2023.PubMed/NCBI View Article : Google Scholar
|