1
|
Liao D, Yang G, Yang Y, Tang X, Huang H,
Shao J and Pan Q: Identification of pannexin 2 as a novel marker
correlating with ferroptosis and malignant phenotypes of prostate
cancer cells. Onco Targets Ther. 13:4411–4421. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Hentze MW, Muckenthaler MU and Andrews NC:
Balancing acts: Molecular control of mammalian iron metabolism.
Cell. 117:285–297. 2004.PubMed/NCBI View Article : Google Scholar
|
3
|
Hassannia B, Vandenabeele P and Vanden
Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell.
35:830–849. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Torti SV and Torti FM: Iron and cancer:
More ore to be mined. Nat Rev Cancer. 13:342–355. 2013.PubMed/NCBI View
Article : Google Scholar
|
5
|
Maccarinelli F, Coltrini D, Mussi S,
Bugatti M, Turati M, Chiodelli P, Giacomini A, De Cillis F, Cattane
N, Cattaneo A, et al: Iron supplementation enhances RSL3-induced
ferroptosis to treat naïve and prevent castration-resistant
prostate cancer. Cell Death Discov. 9(81)2023.PubMed/NCBI View Article : Google Scholar
|
6
|
Ghoochani A, Hsu EC, Aslan M, Rice MA,
Nguyen HM, Brooks JD, Corey E, Paulmurugan R and Stoyanova T:
Ferroptosis inducers are a novel therapeutic approach for advanced
prostate cancer. Cancer Res. 81:1583–1594. 2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Xu B, Zhu WJ, Peng YJ and Cheng SD:
Curcumin reverses the sunitinib resistance in clear cell renal cell
carcinoma (ccRCC) through the induction of ferroptosis via the
ADAMTS18 gene. Transl Cancer Res. 10:3158–3167. 2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R,
Cui X, Yang H, Yang Y, Birnbaumer L, et al: Quercetin alleviates
acute kidney injury by inhibiting ferroptosis. J Adv Res.
28:231–243. 2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Xie R, Zhao W, Lowe S, Bentley R, Hu G,
Mei H, Jiang X, Sun C, Wu Y and Yueying Liu: Quercetin alleviates
kainic acid-induced seizure by inhibiting the Nrf2-mediated
ferroptosis pathway. Free Radic Biol Med. 191:212–226.
2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang X, Jiang L, Chen H, Wei S, Yao K,
Sun X, Yang G, Jiang L, Zhang C, Wang N, et al: Resveratrol
protected acrolein-induced ferroptosis and insulin secretion
dysfunction via ER-stress-related PERK pathway in MIN6 cells.
Toxicology. 465(153048)2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Suzuki T, Motohashi H and Yamamoto M:
Toward clinical application of the Keap1-Nrf2 pathway. Trends
Pharmacol Sci. 34:340–346. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
La Rosa P, Petrillo S, Turchi R,
Berardinelli F, Schirinzi T, Vasco G, Lettieri-Barbato D, Fiorenza
MT, Bertini ES, Aquilano K and Piemonte F: The Nrf2 induction
prevents ferroptosis in Friedreich's Ataxia. Redox Biol.
38(101791)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R
and Tang D: Activation of the p62-Keap1-NRF2 pathway protects
against ferroptosis in hepatocellular carcinoma cells. Hepatology.
63:173–184. 2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Liang J, Liao Y, Wang P, Yang K, Wang Y,
Wang K, Zhong B, Zhou D, Cao Q, Li J, et al: Ferroptosis landscape
in prostate cancer from molecular and metabolic perspective. Cell
Death Discov. 9(128)2023.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang S, Wei W, Ma N, Qu Y and Liu Q:
Molecular mechanisms of ferroptosis and its role in prostate cancer
therapy. Crit Rev Oncol Hematol. 176(103732)2022.PubMed/NCBI View Article : Google Scholar
|
16
|
Choi BH, Kim JM and Kwak MK: The
multifaceted role of NRF2 in cancer progression and cancer stem
cells maintenance. Arch Pharm Res. 44:263–280. 2021.PubMed/NCBI View Article : Google Scholar
|
17
|
Ma H, Wang X, Zhang W, Li H, Zhao W, Sun J
and Yang M: Melatonin suppresses ferroptosis induced by high
glucose via activation of the Nrf2/HO-1 signaling pathway in type 2
diabetic osteoporosis. Oxid Med Cell Longev.
2020(9067610)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Chen J, Zhou S, Zhang X and Zhao H:
S-3'-hydroxy-7', 2', 4'-trimethoxyisoxane, a novel ferroptosis
inducer, promotes NSCLC cell death through inhibiting Nrf2/HO-1
signaling pathway. Front Pharmacol. 13(973611)2022.PubMed/NCBI View Article : Google Scholar
|
19
|
Yuk SS, Lim EM, Lee JY, Lee YJ, Kim YS,
Lee TH, Park SK, Bae H, Kim HM, Ko SG, et al: Antiinflammatory
effects of Epimedium brevicornum water extract on
lipopolysaccharide-activated RAW264.7 macrophages. Phytother Res.
24:1781–1787. 2010.PubMed/NCBI View
Article : Google Scholar
|
20
|
Jin J, Wang H, Hua X, Chen D, Huang C and
Chen Z: An outline for the pharmacological effect of icariin in the
nervous system. Eur J Pharmacol. 842:20–32. 2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Gao JQ, Zhuang SX, Wang Y, Cao FX, Chen L,
Bao YH and Wei Y: Evaluation of Epimedium brevicornum Maxim extract
for anti-osteoporosis activity in rats. Trop J Pharm Res.
16:2185–2190. 2017.
|
22
|
Lo JY, Kamarudin MN, Hamdi OA, Awang K and
Kadir HA: Curcumenol isolated from Curcuma zedoaria suppresses
Akt-mediated NF-κB activation and p38 MAPK signaling pathway in
LPS-stimulated BV-2 microglial cells. Food Funct. 6:3550–3559.
2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Sheng W, Xu W, Ding J, Li L, You X, Wu Y
and He Q: Curcumol inhibits the malignant progression of prostate
cancer and regulates the PDK1/AKT/mTOR pathway by targeting miR-9.
Oncol Rep. 46(246)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Sun DX, Fang ZZ, Zhang YY, Cao YF, Yang L
and Yin J: Inhibitory effects of curcumenol on human liver
cytochrome P450 enzymes. Phytother Res. 24:1213–1216.
2010.PubMed/NCBI View
Article : Google Scholar
|
25
|
Sheng W, Ding J, Liu L, Wang N, Lu B, You
X, He Q and Zhou Q: Curcumol inhibits the development of prostate
cancer by miR-125a/STAT3 Axis. Evid Based Complement Alternat Med.
2022(9317402)2022.PubMed/NCBI View Article : Google Scholar
|
26
|
Xu W, Ding J, Li B, Sun T, You X, He Q and
Sheng W: Effects of icariin and curcumol on autophagy, ferroptosis,
and lipid metabolism based on miR-7/m-TOR/SREBP1 pathway on
prostate cancer. Biofactors. 49:438–456. 2023.PubMed/NCBI View Article : Google Scholar
|
27
|
Xu W, Ding J, Kuang S, Li B, Sun T, Zhu C,
Liu J, Zhu L, Li Y and Sheng W: Icariin-Curcumol promotes docetaxel
sensitivity in prostate cancer through modulation of the PI3K-Akt
signaling pathway and the Warburg effect. Cancer Cell Int.
23(190)2023.PubMed/NCBI View Article : Google Scholar
|
28
|
Nie F, Yan J, Ling Y, Liu Z, Fu C, Li X
and Qin Y: Effect of Shuangdan Mingmu capsule, a Chinese herbal
formula, on oxidative stress-induced apoptosis of pericytes through
PARP/GAPDH pathway. BMC Complement Med Ther. 21(118)2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Newman DJ and Cragg GM: Natural products
as sources of new drugs over the nearly four decades from 01/1981
to 09/2019. J Nat Prod. 83:770–803. 2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Yuan M, Zhang G, Bai W, Han X, Li C and
Bian S: The role of bioactive compounds in natural products
extracted from plants in cancer treatment and their mechanisms
related to anticancer effects. Oxid Med Cell Longev.
2022(1429869)2022.PubMed/NCBI View Article : Google Scholar
|
31
|
Wang S, Ma J, Zeng Y, Zhou G, Wang Y, Zhou
W, Sun X and Wu M: Icariin, an Up-and-Coming bioactive compound
against neurological diseases: Network pharmacology-based study and
literature review. Drug Des Devel Ther. 15:3619–3641.
2021.PubMed/NCBI View Article : Google Scholar
|
32
|
Wei W, Rasul A, Sadiqa A, Sarfraz I,
Hussain G, Nageen B, Liu X, Watanabe N, Selamoglu Z, Ali M, et al:
Curcumol: From plant roots to cancer roots. Int J Biol Sci.
15:1600–1609. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Lee KS, Lee HJ, Ahn KS and Kim SH, Nam D,
Kim DK, Choi DY, Ahn KS, Lu J and Kim SH:
Cyclooxygenase-2/prostaglandin E2 pathway mediates icariside II
induced apoptosis in human PC-3 prostate cancer cells. Cancer Lett.
280:93–100. 2009.PubMed/NCBI View Article : Google Scholar
|
34
|
Liu XJ, Lv YF, Cui WZ, Li Y, Liu Y, Xue YT
and Dong F: Icariin inhibits hypoxia/reoxygenation-induced
ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1
signaling pathway. FEBS Open Bio. 11:2966–2976. 2021.PubMed/NCBI View Article : Google Scholar
|
35
|
Wei ZL, Juan W, Tong D, Juan LX, Sa LY,
Jie HFM, Xiao G, Xiang LG, Jie HM and Xu C: Curcumol inhibits
breast cancer growth via NCL/ERα36 and the PI3K/AKT pathway. Food
Funct. 14:874–885. 2023.PubMed/NCBI View Article : Google Scholar
|
36
|
Huang X, Qian J, Li L, Zhang X, Wei G, Lv
J, Qin F, Yu J, Xiao Y, Gong Z and Huo J: Curcumol improves
cisplatin sensitivity of human gastric cancer cells through
inhibiting PI3K/AKT pathway. Drug Dev Res. 81:1019–1025.
2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Zheng Y, Zhao T and Wang J, Jiang R, Huang
J, Li W and Wang J: Curcumol alleviates liver fibrosis through
inducing autophagy and ferroptosis in hepatic stellate cells. FASEB
J. 36(e22665)2022.PubMed/NCBI View Article : Google Scholar
|
38
|
Wang X, Zhang M, Mao C, Zhang C, Ma W,
Tang J, Xiang D and Qi X: Icariin alleviates ferroptosis-related
atherosclerosis by promoting autophagy in xo-LDL-induced vascular
endothelial cell injury and atherosclerotic mice. Phytother Res.
37:3951–3963. 2023.PubMed/NCBI View Article : Google Scholar
|
39
|
Kashyap D, Garg VK and Goel N: Intrinsic
and extrinsic pathways of apoptosis: Role in cancer development and
prognosis. Adv Protein Chem Struct Biol. 125:73–120.
2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Zhang Q, Liu J, Duan H, Li R, Peng W and
Wu C: Activation of Nrf2/HO-1 signaling: An important molecular
mechanism of herbal medicine in the treatment of atherosclerosis
via the protection of vascular endothelial cells from oxidative
stress. J Adv Res. 34:43–63. 2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Tonelli C, Chio IIC and Tuveson DA:
Transcriptional Regulation by Nrf2. Antioxid Redox Signal.
29:1727–1745. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Wang Y, Yang C, Elsheikh NAH, Li C, Yang
F, Wang G and Li L: HO-1 reduces heat stress-induced apoptosis in
bovine granulosa cells by suppressing oxidative stress. Aging
(Albany NY). 11:5535–5547. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Furfaro AL, Piras S, Domenicotti C,
Fenoglio D, De Luigi A, Salmona M, Moretta L, Marinari UM, Pronzato
MA, Traverso N and Nitti M: Role of Nrf2, HO-1 and GSH in
neuroblastoma cell resistance to bortezomib. PLoS One.
11(e0152465)2016.PubMed/NCBI View Article : Google Scholar
|
44
|
Yang J, Mo J, Dai J, Ye C, Cen W, Zheng X,
Jiang L and Ye L: Cetuximab promotes RSL3-induced ferroptosis by
suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant
colorectal cancer. Cell Death Dis. 12(1079)2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Abdel-Wahab BA, Walbi IA, Albarqi HA, Ali
FEM and Hassanein EHM: Roflumilast protects from cisplatin-induced
testicular toxicity in male rats and enhances its cytotoxicity in
prostate cancer cell line. Role of NF-κB-p65, cAMP/PKA and
Nrf2/HO-1, NQO1 signaling. Food Chem Toxicol.
151(112133)2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Liang Y, Ye F, Xu C, Zou L, Hu Y, Hu J and
Jiang H: A novel survival model based on a Ferroptosis-related gene
signature for predicting overall survival in bladder cancer. BMC
Cancer. 21(943)2021.PubMed/NCBI View Article : Google Scholar
|
47
|
Chen ZA, Tian H, Yao DM, Zhang Y, Feng ZJ
and Yang CJ: Identification of a ferroptosis-related signature
model including mRNAs and lncRNAs for predicting prognosis and
immune activity in hepatocellular carcinoma. Front Oncol.
11(738477)2021.PubMed/NCBI View Article : Google Scholar
|
48
|
Ye Y, Chen A, Li L, Liang Q, Wang S, Dong
Q, Fu M, Lan Z, Li Y, Liu X, et al: Repression of the antiporter
SLC7A11/glutathione/glutathione peroxidase 4 axis drives
ferroptosis of vascular smooth muscle cells to facilitate vascular
calcification. Kidney Int. 102:1259–1275. 2022.PubMed/NCBI View Article : Google Scholar
|
49
|
Jing S, Lu Y, Zhang J, Ren Y, Mo Y, Liu D,
Duan L, Yuan Z, Wang C and Wang Q: Levistilide a induces
ferroptosis by activating the Nrf2/HO-1 signaling pathway in breast
cancer cells. Drug Des Devel Ther. 16:2981–2993. 2022.PubMed/NCBI View Article : Google Scholar
|
50
|
Tang B, Yan R, Zhu J, Cheng S, Kong C,
Chen W, Fang S, Wang Y, Yang Y, Qiu R, et al: Integrative analysis
of the molecular mechanisms, immunological features and
immunotherapy response of ferroptosis regulators across 33 cancer
types. Int J Biol Sci. 18:180–198. 2022.PubMed/NCBI View Article : Google Scholar
|
51
|
Yadav P, Sharma P, Sundaram S, Venkatraman
G, Bera AK and Karunagaran D: SLC7A11/xCT is a target of miR-5096
and its restoration partially rescues miR-5096-mediated ferroptosis
and anti-tumor effects in human breast cancer cells. Cancer Lett.
522:211–224. 2021.PubMed/NCBI View Article : Google Scholar
|
52
|
Ghareghomi S, Moosavi-Movahedi F, Saso L,
Habibi-Rezaei M, Khatibi A, Hong J and Moosavi-Movahedi AA:
Modulation of Nrf2/HO-1 by natural compounds in lung cancer.
Antioxidants (Basel). 12(735)2023.PubMed/NCBI View Article : Google Scholar
|
53
|
Zhang L, Guo J, Zhang Q, Zhou W, Li J, Yin
J, Cui L, Zhang T, Zhao J, Carmichael PL, et al: Flutamide induces
hepatic cell death and mitochondrial dysfunction via inhibition of
Nrf2-Mediated heme oxygenase-1. Oxid Med Cell Longev.
2018(8017073)2018.PubMed/NCBI View Article : Google Scholar
|
54
|
Labanca E, De Luca P, Gueron G, Paez A,
Moiola CP, Massillo C, Porretti J, Giudice J, Zalazar F, Navone N,
et al: Association of HO-1 and BRCA1 is critical for the
maintenance of cellular homeostasis in prostate cancer. Mol Cancer
Res. 13:1455–1464. 2015.PubMed/NCBI View Article : Google Scholar
|
55
|
Jiang G, Liang X, Huang Y, Lan Z, Zhang Z,
Su Z, Fang Z, Lai Y, Yao W, Liu T, et al: p62 promotes
proliferation, apoptosis-resistance and invasion of prostate cancer
cells through the Keap1/Nrf2/ARE axis. Oncol Rep. 43:1547–1557.
2020.PubMed/NCBI View Article : Google Scholar
|
56
|
Li J, Xiong C, Xu P, Luo Q and Zhang R:
Puerarin induces apoptosis in prostate cancer cells via
inactivation of the Keap1/Nrf2/ARE signaling pathway.
Bioengineered. 12:402–413. 2021.PubMed/NCBI View Article : Google Scholar
|
57
|
Kwon SK, Saindane M and Baek KH: p53
stability is regulated by diverse deubiquitinating enzymes. Biochim
Biophys Acta Rev Cancer. 1868:404–411. 2017.PubMed/NCBI View Article : Google Scholar
|
58
|
Kanapathipillai M: Treating p53 mutant
aggregation-associated cancer. Cancers (Basel).
10(154)2018.PubMed/NCBI View Article : Google Scholar
|
59
|
Liu J, Zhang C, Hu W and Feng Z: Tumor
suppressor p53 and metabolism. J Mol Cell Biol. 11:284–292.
2019.PubMed/NCBI View Article : Google Scholar
|
60
|
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang
Y, Yang X, Fei J, Hao X, Zhao Y, et al: Tagitinin C induces
ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal
cancer cells. Int J Biol Sci. 17:2703–2717. 2021.PubMed/NCBI View Article : Google Scholar
|