1
|
Wang CJ, Cheng JH, Chou WY, Hsu SL, Chen
JH and Huang CY: Changes of articular cartilage and subchondral
bone after extracorporeal shockwave therapy in osteoarthritis of
the knee. Int J Med Sci. 14:213–223. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Li X, Chen W, Liu D, Chen P, Wang S, Li F,
Chen Q, Lv S, Li F, Chen C, et al: Pathological progression of
osteoarthritis: A perspective on subchondral bone. Front Med: Apr
15, 2024 (Epub ahead of print).
|
3
|
Wojdasiewicz P, Poniatowski ŁA and
Szukiewicz D: The role of inflammatory and anti-inflammatory
cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm.
2014(561459)2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Goldring MB and Otero M: Inflammation in
osteoarthritis. Curr Opin Rheumatol. 23:471–478. 2011.PubMed/NCBI View Article : Google Scholar
|
5
|
Kong H, Han JJ, Dmitrii G and Zhang XA:
Phytochemicals against osteoarthritis by inhibiting apoptosis.
Molecules. 29(1487)2024.PubMed/NCBI View Article : Google Scholar
|
6
|
Pelletier JP, Martel-Pelletier J, Rannou F
and Cooper C: Efficacy and safety of oral NSAIDs and analgesics in
the management of osteoarthritis: Evidence from real-life setting
trials and surveys. Semin Arthritis Rheum. 45 (4 Suppl):S22–S27.
2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Thielen NGM, Neefjes M, Vitters EL, van
Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ,
Blaney Davidson EN, van Caam APM and van der Kraan PM:
Identification of transcription factors responsible for a
transforming growth factor-β-driven hypertrophy-like phenotype in
human osteoarthritic chondrocytes. Cells. 11(1232)2022.PubMed/NCBI View Article : Google Scholar
|
8
|
Park S, Bello A, Arai Y, Ahn J, Kim D, Cha
KY, Baek I, Park H and Lee SH: Functional duality of chondrocyte
hypertrophy and biomedical application trends in osteoarthritis.
Pharmaceutics. 13(1139)2021.PubMed/NCBI View Article : Google Scholar
|
9
|
van der Kraan PM and van den Berg WB:
Chondrocyte hypertrophy and osteoarthritis: Role in initiation and
progression of cartilage degeneration? Osteoarthritis Cartilage.
20:223–232. 2012.PubMed/NCBI View Article : Google Scholar
|
10
|
von der Mark K, Kirsch T, Nerlich A, Kuss
A, Weseloh G, Glückert K and Stöss H: Type X collagen synthesis in
human osteoarthritic cartilage. Indication of chondrocyte
hypertrophy. Arthritis Rheum. 35:806–811. 1992.PubMed/NCBI View Article : Google Scholar
|
11
|
Ferrao Blanco MN, Bastiaansen-Jenniskens
YM, Chambers MG, Pitsillides AA, Narcisi R and van Osch GJVM:
Effect of inflammatory signaling on human articular chondrocyte
hypertrophy: Potential involvement of tissue repair macrophages.
Cartilage. 13 (2 Suppl):168S–174S. 2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Yoshida CA, Yamamoto H, Fujita T, Furuichi
T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y and Komori T:
Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2
regulates limb growth through induction of Indian hedgehog. Genes
Dev. 18:952–963. 2004.PubMed/NCBI View Article : Google Scholar
|
13
|
Chen N, Wu RWH, Lam Y, Chan WCW and Chan
D: Hypertrophic chondrocytes at the junction of musculoskeletal
structures. Bone Rep. 19(101698)2023.PubMed/NCBI View Article : Google Scholar
|
14
|
Kawashima K, Ogawa H, Komura S, Ishihara
T, Yamaguchi Y, Akiyama H and Matsumoto K: Heparan sulfate
deficiency leads to hypertrophic chondrocytes by increasing bone
morphogenetic protein signaling. Osteoarthritis Cartilage.
28:1459–1470. 2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Saitta B, Elphingstone J, Limfat S,
Shkhyan R and Evseenko D: CaMKII inhibition in human primary and
pluripotent stem cell-derived chondrocytes modulates effects of
TGFβ and BMP through SMAD signaling. Osteoarthritis Cartilage.
27:158–171. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Li G, Peng H, Corsi K, Usas A, Olshanski A
and Huard J: Differential effect of BMP4 on NIH/3T3 and C2C12
cells: Implications for endochondral bone formation. J Bone Miner
Res. 20:1611–1623. 2005.PubMed/NCBI View Article : Google Scholar
|
17
|
Liang C, Sun R, Xu Y, Geng W and Li J:
Effect of the abnormal expression of BMP-4 in the blood of diabetic
patients on the osteogenic differentiation potential of alveolar
BMSCs and the rescue effect of metformin: A bioinformatics-based
study. Biomed Res Int. 2020(7626215)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Helbing T, Wiltgen G, Hornstein A, Brauers
EZ, Arnold L, Bauer A, Esser JS, Diehl P, Grundmann S, Fink K, et
al: Bone morphogenetic protein-modulator BMPER regulates
endothelial barrier function. Inflammation. 40:442–453.
2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Heinke J, Wehofsits L, Zhou Q, Zoeller C,
Baar KM, Helbing T, Laib A, Augustin H, Bode C, Patterson C and
Moser M: BMPER is an endothelial cell regulator and controls bone
morphogenetic protein-4-dependent angiogenesis. Circ Res.
103:804–812. 2008.PubMed/NCBI View Article : Google Scholar
|
20
|
Jin H, Zhang L, He J, Wu M, Jia L and Guo
J: Role of FOXO3a transcription factor in the regulation of liver
oxidative injury. Antioxidants (Basel). 11(2478)2022.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhao X, Liu Y, Zhu G, Liang Y, Liu B, Wu
Y, Han M, Sun W, Han Y, Chen G and Jiang J: SIRT1 downregulation
mediated Manganese-induced neuronal apoptosis through activation of
FOXO3a-Bim/PUMA axis. Sci Total Environ. 646:1047–1055.
2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Peng F, Huang X, Shi W, Xiao Y, Jin Q, Li
L, Xu D and Wu L: 5,7,3',4'-Tetramethoxyflavone ameliorates
cholesterol dysregulation by mediating SIRT1/FOXO3a/ABCA1 signaling
in osteoarthritis chondrocytes. Future Med Chem. 13:2153–2166.
2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Sakamoto J, Miyahara S, Motokawa S,
Takahashi A, Sasaki R, Honda Y and Okita M: Regular walking
exercise prior to knee osteoarthritis reduces joint pain in an
animal model. PLoS One. 18(e0289765)2023.PubMed/NCBI View Article : Google Scholar
|
24
|
Wu L, Liu H, Li L, Liu H, Yang K, Liu Z
and Huang H: 5,7,3',4'-Tetramethoxyflavone exhibits
chondroprotective activity by targeting β-catenin signaling in vivo
and in vitro. Biochem Biophys Res Commun. 452:682–688.
2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Yang J, Liu H, Li L, Liu H, Shi W and Wu
L: The chondroprotective role of TMF in PGE2-induced apoptosis
associating with endoplasmic reticulum stress. Evid Based
Complement Alternat Med. 2015(297423)2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Horváth E, Sólyom Á, Székely J, Nagy EE
and Popoviciu H: Inflammatory and metabolic signaling interfaces of
the hypertrophic and senescent chondrocyte phenotypes associated
with osteoarthritis. Int J Mol Sci. 24(16468)2023.PubMed/NCBI View Article : Google Scholar
|
27
|
Abou-Jaoude A, Courtes M, Badique L, Elhaj
Mahmoud D, Abboud C, Mlih M, Justiniano H, Milbach M, Lambert M,
Lemle A, et al: ShcA promotes chondrocyte hypertrophic commitment
and osteoarthritis in mice through RunX2 nuclear translocation and
YAP1 inactivation. Osteoarthritis Cartilage. 30:1365–1375.
2022.PubMed/NCBI View Article : Google Scholar
|
28
|
Yoon DS, Kim EJ, Cho S, Jung S, Lee KM,
Park KH, Lee JW and Kim SH: RUNX2 stabilization by long non-coding
RNAs contributes to hypertrophic changes in human chondrocytes. Int
J Biol Sci. 19:13–33. 2023.PubMed/NCBI View Article : Google Scholar
|
29
|
Hu Q and Ecker M: Overview of MMP-13 as a
promising target for the treatment of osteoarthritis. Int J Mol
Sci. 22(1742)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Dreier R: Hypertrophic differentiation of
chondrocytes in osteoarthritis: The developmental aspect of
degenerative joint disorders. Arthritis Res Ther.
12(216)2010.PubMed/NCBI View
Article : Google Scholar
|
31
|
Shigley C, Trivedi J, Meghani O, Owens BD
and Jayasuriya CT: Suppressing chondrocyte hypertrophy to build
better cartilage. Bioengineering (Basel). 10(741)2023.PubMed/NCBI View Article : Google Scholar
|
32
|
Dicks AR, Maksaev GI, Harissa Z,
Savadipour A, Tang R, Steward N, Liedtke W, Nichols CG, Wu CL and
Guilak F: Skeletal dysplasia-causing TRPV4 mutations suppress the
hypertrophic differentiation of human iPSC-derived chondrocytes.
Elife. 12(e71154)2023.PubMed/NCBI View Article : Google Scholar
|
33
|
Lian C, Tao T, Su P, Liao Z, Wang X, Lei
Y, Zhao P and Liu L: Targeting miR-18a sensitizes chondrocytes to
anticytokine therapy to prevent osteoarthritis progression. Cell
Death Dis. 11(947)2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Cong L, Jiang P, Wang H, Huang L, Wu G,
Che X, Wang C and Li P, Duan Q, Guo X and Li P: MiR-1 is a critical
regulator of chondrocyte proliferation and hypertrophy by
inhibiting Indian hedgehog pathway during postnatal endochondral
ossification in miR-1 overexpression transgenic mice. Bone.
165(116566)2022.PubMed/NCBI View Article : Google Scholar
|
35
|
Hoyland JA, Thomas JT, Donn R, Marriott A,
Ayad S, Boot-Handford RP, Grant ME and Freemont AJ: Distribution of
type X collagen mRNA in normal and osteoarthritic human cartilage.
Bone Miner. 15:151–163. 1991.PubMed/NCBI View Article : Google Scholar
|
36
|
Chawla S, Mainardi A, Majumder N, Dönges
L, Kumar B, Occhetta P, Martin I, Egloff C, Ghosh S, Bandyopadhyay
A and Barbero A: Chondrocyte hypertrophy in osteoarthritis:
Mechanistic studies and models for the identification of new
therapeutic strategies. Cells. 11(4034)2022.PubMed/NCBI View Article : Google Scholar
|
37
|
Bae SC, Lee KS, Zhang YW and Ito Y:
Intimate relationship between TGF-beta/BMP signaling and runt
domain transcription factor, PEBP2/CBF. J Bone Joint Surg Am. 83-A
(Suppl 1):S48–S55. 2001.PubMed/NCBI
|
38
|
Nishimura R, Hata K, Takahata Y, Murakami
T, Nakamura E and Yagi H: Regulation of cartilage development and
diseases by transcription factors. J Bone Metab. 24:147–153.
2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Nordin K and LaBonne C: Sox5 is a
DNA-binding cofactor for BMP R-Smads that directs target
specificity during patterning of the early ectoderm. Dev Cell.
31:374–382. 2014.PubMed/NCBI View Article : Google Scholar
|
40
|
Simonds MM, Schlefman AR, McCahan SM,
Sullivan KE, Rose CD and Brescia AMC: The culture microenvironment
of juvenile idiopathic arthritis synovial fibroblasts is favorable
for endochondral bone formation through BMP4 and repressed by
chondrocytes. Pediatr Rheumatol Online J. 19(72)2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Shum L, Wang X, Kane AA and Nuckolls GH:
BMP4 promotes chondrocyte proliferation and hypertrophy in the
endochondral cranial base. Int J Dev Biol. 47:423–431.
2003.PubMed/NCBI
|
42
|
Simonds MM, Schlefman AR, McCahan SM,
Sullivan KE, Rose CD and Brescia AC: Juvenile idiopathic arthritis
fibroblast-like synoviocytes influence chondrocytes to alter BMP
antagonist expression demonstrating an interaction between the two
prominent cell types involved in endochondral bone formation.
Pediatr Rheumatol Online J. 18(89)2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Karl A, Olbrich N, Pfeifer C, Berner A,
Zellner J, Kujat R, Angele P, Nerlich M and Mueller MB: Thyroid
hormone-induced hypertrophy in mesenchymal stem cell chondrogenesis
is mediated by bone morphogenetic protein-4. Tissue Eng Part A.
20:178–188. 2014.PubMed/NCBI View Article : Google Scholar
|
44
|
Moser M, Binder O, Wu Y, Aitsebaomo J, Ren
R, Bode C, Bautch VL, Conlon FL and Patterson C: BMPER, a novel
endothelial cell precursor-derived protein, antagonizes bone
morphogenetic protein signaling and endothelial cell
differentiation. Mol Cell Biol. 23:5664–5679. 2003.PubMed/NCBI View Article : Google Scholar
|
45
|
Yao Y, Jumabay M, Ly A, Radparvar M, Wang
AH, Abdmaulen R and Boström KI: Crossveinless 2 regulates bone
morphogenetic protein 9 in human and mouse vascular endothelium.
Blood. 119:5037–5047. 2012.PubMed/NCBI View Article : Google Scholar
|
46
|
Pankratz F, Maksudova A, Goesele R, Meier
L, Proelss K, Marenne K, Thut AK, Sengle G, Correns A, Begelspacher
J, et al: BMPER improves vascular remodeling and the contractile
vascular SMC phenotype. Int J Mol Sci. 24(4950)2023.PubMed/NCBI View Article : Google Scholar
|
47
|
Kelley R, Ren R, Pi X, Wu Y, Moreno I,
Willis M, Moser M, Ross M, Podkowa M, Attisano L and Patterson C: A
concentration-dependent endocytic trap and sink mechanism converts
Bmper from an activator to an inhibitor of Bmp signaling. J Cell
Biol. 184:597–609. 2009.PubMed/NCBI View Article : Google Scholar
|
48
|
Xiao F, Wang C, Wang C, Gao Y, Zhang X and
Chen X: BMPER enhances bone formation by promoting the
osteogenesis-angiogenesis coupling process in mesenchymal stem
cells. Cell Physiol Biochem. 45:1927–1939. 2018.PubMed/NCBI View Article : Google Scholar
|
49
|
Ji N and Yu Z: IL-6/Stat3 suppresses
osteogenic differentiation in ossification of the posterior
longitudinal ligament via miR-135b-mediated BMPER reduction. Cell
Tissue Res. 391:145–157. 2023.PubMed/NCBI View Article : Google Scholar
|
50
|
Satomi-Kobayashi S, Kinugasa M, Kobayashi
R, Hatakeyama K, Kurogane Y, Ishida T, Emoto N, Asada Y, Takai Y,
Hirata K and Rikitake Y: Osteoblast-like differentiation of
cultured human coronary artery smooth muscle cells by bone
morphogenetic protein endothelial cell precursor-derived regulator
(BMPER). J Biol Chem. 287:30336–30345. 2012.PubMed/NCBI View Article : Google Scholar
|
51
|
Dyer L, Lockyer P, Wu Y, Saha A, Cyr C,
Moser M, Pi X and Patterson C: BMPER promotes
epithelial-mesenchymal transition in the developing cardiac
cushions. PLoS One. 10(e0139209)2015.PubMed/NCBI View Article : Google Scholar
|
52
|
Lockhart-Cairns MP, Lim KTW, Zuk A, Godwin
ARF, Cain SA, Sengle G and Baldock C: Internal cleavage and synergy
with twisted gastrulation enhance BMP inhibition by BMPER. Matrix
Biol. 77:73–86. 2019.PubMed/NCBI View Article : Google Scholar
|
53
|
He 何 璇 XA, Berenson A, Bernard M, Weber C,
Cook L, Visel A, Fuxman Bass JI and Fisher S: Identification of
conserved skeletal enhancers associated with craniosynostosis risk
genes. Hum Mol Genet. (ddad182)2023.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
54
|
Chen L, Li S, Zhu J, You A, Huang X, Yi X
and Xue M: Mangiferin prevents myocardial infarction-induced
apoptosis and heart failure in mice by activating the Sirt1/FoxO3a
pathway. J Cell Mol Med. 25:2944–2955. 2021.PubMed/NCBI View Article : Google Scholar
|
55
|
Zhang Y, Dai J, Yan L, Lin Q, Miao H, Wang
X, Wang J and Sun Y: DL-3-N-butylphthalide promotes cartilage
extracellular matrix synthesis and inhibits osteoarthritis
development by regulating FoxO3a. Oxid Med Cell Longev.
2022(9468040)2022.PubMed/NCBI View Article : Google Scholar
|
56
|
Zhao X, Petursson F, Viollet B, Lotz M,
Terkeltaub R and Liu-Bryan R: Peroxisome proliferator-activated
receptor γ coactivator 1α and FoxO3A mediate chondroprotection by
AMP-activated protein kinase. Arthritis Rheumatol. 66:3073–3082.
2014.PubMed/NCBI View Article : Google Scholar
|
57
|
Jiang A, Xu P, Yang Z, Zhao Z, Tan Q, Li
W, Song C, Dai H and Leng H: Increased Sparc release from
subchondral osteoblasts promotes articular chondrocyte degeneration
under estrogen withdrawal. Osteoarthritis Cartilage. 31:26–38.
2023.PubMed/NCBI View Article : Google Scholar
|
58
|
Ciechomska IA, Gielniewski B, Wojtas B,
Kaminska B and Mieczkowski J: EGFR/FOXO3a/BIM signaling pathway
determines chemosensitivity of BMP4-differentiated glioma stem
cells to temozolomide. Exp Mol Med. 52:1326–1340. 2020.PubMed/NCBI View Article : Google Scholar
|
59
|
Wan Q, Tang L, Jin K, Chen X, Li Y and Xu
X: Quercetin and tanshinone prevent mitochondria from oxidation and
autophagy to inhibit KGN cell apoptosis through the
SIRT1/SIRT3-FOXO3a axis. Cell Mol Biol (Noisy-le-grand).
70:257–263. 2024.PubMed/NCBI View Article : Google Scholar
|
60
|
Qiu CW, Chen B, Zhu HF, Liang YL and Mao
LS: Gastrodin alleviates cisplatin nephrotoxicity by inhibiting
ferroptosis via the SIRT1/FOXO3A/GPX4 signaling pathway. J
Ethnopharmacol. 319(117282)2024.PubMed/NCBI View Article : Google Scholar
|
61
|
Wu L, Li P, Wang X, Zhuang Z, Farzaneh F
and Xu R: Evaluation of anti-inflammatory and antinociceptive
activities of Murraya exotica. Pharm Biol. 48:1344–1353.
2010.PubMed/NCBI View Article : Google Scholar
|
62
|
Rehman R, Anila Muzaffar R, Arshad F,
Hussain R and Altaf AA: Diversity in phytochemical composition and
medicinal value of Murraya paniculata. Chem Biodivers.
20(e202200396)2023.PubMed/NCBI View Article : Google Scholar
|
63
|
Wu L, Liu H, Zhang R, Li L, Li J, Hu H and
Huang H: Chondroprotective activity of Murraya exotica
through inhibiting β-catenin signaling pathway. Evid Based
Complement Alternat Med. 2013(752150)2013.PubMed/NCBI View Article : Google Scholar
|
64
|
Liu W, Feng M and Xu P: From regeneration
to osteoarthritis in the knee joint: The role shift of
cartilage-derived progenitor cells. Front Cell Dev Biol.
10(1010818)2022.PubMed/NCBI View Article : Google Scholar
|