1
|
Anjum A, Yazid MD, Daud MF, Idris J, Ng
AMH, Naicker AS, Ismail OHR, Kumar RK and Lokanathan Y: Spinal cord
injury: Pathophysiology, multimolecular interactions, and
underlying recovery mechanisms. Int J Mol Sci.
21(7533)2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R,
Ma B, Zhao J, Zhu R and Cheng L: Spinal cord injury: Molecular
mechanisms and therapeutic interventions. Signal Transduct Target
Ther. 8(245)2023.PubMed/NCBI View Article : Google Scholar
|
3
|
Calvert JS, Grahn PJ, Zhao KD and Lee KH:
Emergence of epidural electrical stimulation to facilitate
sensorimotor network functionality after spinal cord injury.
Neuromodulation. 22:244–252. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Thomaz SR, Cipriano G Jr, Formiga MF,
Fachin-Martins E, Cipriano GFB, Martins WR and Cahalin LP: Effect
of electrical stimulation on muscle atrophy and spasticity in
patients with spinal cord injury-a systematic review with
meta-analysis. Spinal Cord. 57:258–266. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Brockie S, Hong J and Fehlings MG: The
role of microglia in modulating neuroinflammation after spinal cord
injury. Int J Mol Sci. 22(9706)2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Nimmerjahn A, Kirchhoff F and Helmchen F:
Resting microglial cells are highly dynamic surveillants of brain
parenchyma in vivo. Science. 308:1314–1318. 2005.PubMed/NCBI View Article : Google Scholar
|
7
|
van der Poel M, Ulas T, Mizee MR, Hsiao
CC, Miedema SSM, Adelia Schuurman KG, Helder B, Tas SW, Schultze
JL, et al: Transcriptional profiling of human microglia reveals
grey-white matter heterogeneity and multiple sclerosis-associated
changes. Nat Commun. 10(1139)2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Paolicelli RC, Sierra A, Stevens B,
Tremblay ME, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I,
Bennett M, et al: Microglia states and nomenclature: A field at its
crossroads. Neuron. 110:3458–3483. 2022.PubMed/NCBI View Article : Google Scholar
|
9
|
Parajuli B and Koizumi S: Strategies for
manipulating microglia to determine their role in the healthy and
diseased brain. Neurochem Res. 48:1066–1076. 2023.PubMed/NCBI View Article : Google Scholar
|
10
|
Freyermuth-Trujillo X, Segura-Uribe JJ,
Salgado-Ceballos H, Orozco-Barrios CE and Coyoy-Salgado A:
Inflammation: A target for treatment in spinal cord injury. Cells.
11(2692)2022.PubMed/NCBI View Article : Google Scholar
|
11
|
Deng J, Meng F, Zhang K, Gao J, Liu Z, Li
M, Liu X, Li J, Wang Y, Zhang L and Tang P: Emerging roles of
microglia depletion in the treatment of spinal cord injury. Cells.
11(1871)2022.PubMed/NCBI View Article : Google Scholar
|
12
|
Devanney NA, Stewart AN and Gensel JC:
Microglia and macrophage metabolism in CNS injury and disease: The
role of immunometabolism in neurodegeneration and neurotrauma. Exp
Neurol. 329(113310)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Shields DC, Haque A and Banik NL:
Neuroinflammatory responses of microglia in central nervous system
trauma. J Cereb Blood Flow Metab. 40:S25–S33. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Mesquida-Veny F, Del Rio JA and Hervera A:
Macrophagic and microglial complexity after neuronal injury. Prog
Neurobiol. 200(101970)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Verkhratsky A, Sun D and Tanaka J:
Snapshot of microglial physiological functions. Neurochem Int.
144(104960)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Savill J and Fadok V: Corpse clearance
defines the meaning of cell death. Nature. 407:784–788.
2000.PubMed/NCBI View
Article : Google Scholar
|
17
|
Hochreiter-Hufford A and Ravichandran KS:
Clearing the dead: Apoptotic cell sensing, recognition, engulfment,
and digestion. Cold Spring Harb Perspect Biol.
5(a008748)2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Moon B, Yang S, Moon H, Lee J and Park D:
After cell death: The molecular machinery of efferocytosis. Exp Mol
Med. 55:1644–1651. 2023.PubMed/NCBI View Article : Google Scholar
|
19
|
Doran AC, Yurdagul A Jr and Tabas I:
Efferocytosis in health and disease. Nat Rev Immunol. 20:254–267.
2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Andrews SJ, Renton AE, Fulton-Howard B,
Podlesny-Drabiniok A, Marcora E and Goate AM: The complex genetic
architecture of Alzheimer's disease: Novel insights and future
directions. EBioMedicine. 90(104511)2023.PubMed/NCBI View Article : Google Scholar
|
21
|
Balena T, Lillis K, Rahmati N, Bahari F,
Dzhala V, Berdichevsky E and Staley K: A dynamic balance between
neuronal death and clearance after acute brain injury. bioRxiv.
14(2023.02.14.528332)2023.PubMed/NCBI View Article : Google Scholar
|
22
|
Mike JK and Ferriero DM: Efferocytosis
mediated modulation of injury after neonatal brain
hypoxia-ischemia. Cells. 10(1025)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Ortuno FM, Torres C, Glosekotter P and
Rojas I: New trends in biomedical engineering and bioinformatics
applied to biomedicine-special issue of IWBBIO 2014. Biomed Eng
Online. 14 (Suppl 2)(I1)2015.PubMed/NCBI View Article : Google Scholar
|
24
|
van Dijk EL, Auger H, Jaszczyszyn Y and
Thermes C: Ten years of next-generation sequencing technology.
Trends Genet. 30:418–426. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Greener JG, Kandathil SM, Moffat L and
Jones DT: A guide to machine learning for biologists. Nat Rev Mol
Cell Biol. 23:40–55. 2022.PubMed/NCBI View Article : Google Scholar
|
26
|
Masuda T, Sankowski R, Staszewski O and
Prinz M: Microglia heterogeneity in the single-cell era. Cell Rep.
30:1271–1281. 2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Grommes C, Lee CY, Wilkinson BL, Jiang Q,
Koenigsknecht-Talboo JL, Varnum B and Landreth GE: Regulation of
microglial phagocytosis and inflammatory gene expression by Gas6
acting on the Axl/Mer family of tyrosine kinases. J Neuroimmune
Pharmacol. 3:130–140. 2008.PubMed/NCBI View Article : Google Scholar
|
28
|
Ji R, Tian S, Lu HJ and Lu Q, Zheng Y,
Wang X, Ding J, Li Q and Lu Q: TAM receptors affect adult brain
neurogenesis by negative regulation of microglial cell activation.
J Immunol. 191:6165–6177. 2013.PubMed/NCBI View Article : Google Scholar
|
29
|
Scott RS, McMahon EJ, Pop SM, Reap EA,
Caricchio R, Cohen PL, Earp HS and Matsushima GK: Phagocytosis and
clearance of apoptotic cells is mediated by MER. Nature.
411:207–211. 2001.PubMed/NCBI View Article : Google Scholar
|
30
|
Healy LM, Perron G, Won SY,
Michell-Robinson MA, Rezk A, Ludwin SK, Moore CS, Hall JA, Bar-Or A
and Antel JP: MerTK is a functional regulator of myelin
phagocytosis by human myeloid cells. J Immunol. 196:3375–3384.
2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Fourgeaud L, Traves PG, Tufail Y,
Leal-Bailey H, Lew ED, Burrola PG, Callaway P, Zagórska A, Rothlin
CV, Nimmerjahn A and Lemke G: TAM receptors regulate multiple
features of microglial physiology. Nature. 532:240–244.
2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Christoph S, Deryckere D, Schlegel J,
Frazer JK, Batchelor LA, Trakhimets AY, Sather S, Hunter DM,
Cummings CT, Liu J, et al: UNC569, a novel small-molecule mer
inhibitor with efficacy against acute lymphoblastic leukemia in
vitro and in vivo. Mol Cancer Ther. 12:2367–2377. 2013.PubMed/NCBI View Article : Google Scholar
|
33
|
Kalyan M, Tousif AH, Sonali S, Vichitra C,
Sunanda T, Praveenraj SS, Ray B, Gorantla VR, Rungratanawanich W,
Mahalakshmi AM, et al: Role of endogenous lipopolysaccharides in
neurological disorders. Cells. 11(4038)2022.PubMed/NCBI View Article : Google Scholar
|
34
|
Brown GC, Camacho M and Williams-Gray CH:
The endotoxin hypothesis of Parkinson's disease. Mov Disord.
38:1143–1155. 2023.PubMed/NCBI View Article : Google Scholar
|
35
|
Atta AA, Ibrahim WW, Mohamed AF and
Abdelkader NF: Microglia polarization in nociplastic pain:
Mechanisms and perspectives. Inflammopharmacology. 31:1053–1067.
2023.PubMed/NCBI View Article : Google Scholar
|
36
|
Zhou X, Zhao R, Lv M, Xu X, Liu W, Li X,
Gao Y, Zhao Z, Zhang Z, Li Y, et al: ACSL4 promotes
microglia-mediated neuroinflammation by regulating lipid metabolism
and VGLL4 expression. Brain Behav Immun. 109:331–343.
2023.PubMed/NCBI View Article : Google Scholar
|
37
|
Wang M, Yang Y, Guo Y, Tan R, Sheng Y,
Chui H, Chen P, Luo H, Ying Z, Li L, et al: Xiaoxuming decoction
cutting formula reduces LPS-stimulated inflammation in BV-2 cells
by regulating miR-9-5p in microglia exosomes. Front Pharmacol.
14(1183612)2023.PubMed/NCBI View Article : Google Scholar
|
38
|
Wu J, Han Y, Xu H, Sun H, Wang R, Ren H
and Wang G: Deficient chaperone-mediated autophagy facilitates
LPS-induced microglial activation via regulation of the
p300/NF-κB/NLRP3 pathway. Sci Adv. 9(eadi8343)2023.PubMed/NCBI View Article : Google Scholar
|
39
|
He Y, Wang Y, Yu H, Tian Y, Chen X, Chen
C, Ren Y, Chen Z, Ren Y, Gong X, et al: Protective effect of Nr4a2
(Nurr1) against LPS-induced depressive-like behaviors via
regulating activity of microglia and CamkII neurons in anterior
cingulate cortex. Pharmacol Res. 191(106717)2023.PubMed/NCBI View Article : Google Scholar
|
40
|
Noristani HN, Gerber YN, Sabourin JC, Le
Corre M, Lonjon N, Mestre-Frances N, Hirbec HE and Perrin FE:
RNA-Seq analysis of microglia reveals time-dependent activation of
specific genetic programs following spinal cord injury. Front Mol
Neurosci. 10(90)2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Leek JT, Johnson WE, Parker HS, Jaffe AE
and Storey JD: The sva package for removing batch effects and other
unwanted variation in high-throughput experiments. Bioinformatics.
28:882–883. 2012.PubMed/NCBI View Article : Google Scholar
|
42
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43(e47)2015.PubMed/NCBI View Article : Google Scholar
|
43
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9(559)2008.PubMed/NCBI View Article : Google Scholar
|
44
|
Horvath S and Dong J: Geometric
interpretation of gene coexpression network analysis. PLoS Comput
Biol. 4(e1000117)2008.PubMed/NCBI View Article : Google Scholar
|
45
|
Wang H and Zhou L: Random survival forest
with space extensions for censored data. Artif Intell Med.
79:52–61. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Han H, Lee S and Lee I: NGSEA:
Network-based gene set enrichment analysis for interpreting gene
expression phenotypes with functional gene sets. Mol Cells.
42:579–588. 2019.PubMed/NCBI View Article : Google Scholar
|
47
|
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z,
Feng T, Zhou L, Tang W, Zhan L, et al: clusterProfiler 4.0: A
universal enrichment tool for interpreting omics data. Innovation
(Camb). 2(100141)2021.PubMed/NCBI View Article : Google Scholar
|
48
|
Zhou Y, Zhou B, Pache L, Chang M,
Khodabakhshi AH, Tanaseichuk O, Benner C and Chanda SK: Metascape
provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat Commun. 10(1523)2019.PubMed/NCBI View Article : Google Scholar
|
49
|
Jeong H, Mason SP, Barabasi AL and Oltvai
ZN: Lethality and centrality in protein networks. Nature.
411:41–42. 2001.PubMed/NCBI View Article : Google Scholar
|
50
|
Ito K and Murphy D: Application of ggplot2
to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol.
2(e79)2013.PubMed/NCBI View Article : Google Scholar
|
51
|
Tibshirani R, Bien J, Friedman J, Hastie
T, Simon N, Taylor J and Tibshirani RJ: Strong rules for discarding
predictors in lasso-type problems. J R Stat Soc Series B Stat
Methodol. 74:245–266. 2012.PubMed/NCBI View Article : Google Scholar
|
52
|
Orihuela R, McPherson CA and Harry GJ:
Microglial M1/M2 polarization and metabolic states. Br J Pharmacol.
173:649–665. 2016.PubMed/NCBI View Article : Google Scholar
|
53
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
54
|
Nomura K, Vilalta A, Allendorf DH, Hornik
TC and Brown GC: Activated microglia desialylate and phagocytose
cells via neuraminidase, galectin-3, and mer tyrosine kinase. J
Immunol. 198:4792–4801. 2017.PubMed/NCBI View Article : Google Scholar
|
55
|
Barberis E, Khoso S, Sica A, Falasca M,
Gennari A, Dondero F, Afantitis A and Manfredi M: Precision
medicine approaches with metabolomics and artificial intelligence.
Int J Mol Sci. 23(11269)2022.PubMed/NCBI View Article : Google Scholar
|
56
|
Sanchez-Baizan N, Ribas L and Piferrer F:
Improved biomarker discovery through a plot twist in transcriptomic
data analysis. BMC Biol. 20(208)2022.PubMed/NCBI View Article : Google Scholar
|
57
|
Liu T, Wang Y, Wang Y, Cheung SK, Or PM,
Wong CW, Guan J, Li Z, Yang W, Tu Y, et al: The mitotic regulator
RCC2 promotes glucose metabolism through BACH1-dependent
transcriptional upregulation of hexokinase II in glioma. Cancer
Lett. 549(215914)2022.PubMed/NCBI View Article : Google Scholar
|
58
|
Yan L, Fu J, Dong X, Chen B, Hong H and
Cui Z: Identification of hub genes in the subacute spinal cord
injury in rats. BMC Neurosci. 23(51)2022.PubMed/NCBI View Article : Google Scholar
|
59
|
Alhamzawi R and Ali HTM: The Bayesian
adaptive lasso regression. Math Biosci. 303:75–82. 2018.PubMed/NCBI View Article : Google Scholar
|
60
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu
J, Zhou Z, Lin X, Yan H and Wang Q: Efferocytosis in the central
nervous system. Front Cell Dev Biol. 9(773344)2021.PubMed/NCBI View Article : Google Scholar
|
61
|
Poon IKH and Ravichandran KS: Targeting
efferocytosis in inflammaging. Annu Rev Pharmacol Toxicol.
23:339–357. 2023.PubMed/NCBI View Article : Google Scholar
|
62
|
Nagata S: Apoptosis and clearance of
apoptotic cells. Annu Rev Immunol. 36:489–517. 2018.PubMed/NCBI View Article : Google Scholar
|
63
|
Zhou L and Matsushima GK: Tyro3, Axl,
Mertk receptor-mediated efferocytosis and immune regulation in the
tumor environment. Int Rev Cell Mol Biol. 361:165–210.
2021.PubMed/NCBI View Article : Google Scholar
|
64
|
Wang CY and Lin CF: Annexin A2: Its
molecular regulation and cellular expression in cancer development.
Dis Markers. 2014(308976)2014.PubMed/NCBI View Article : Google Scholar
|
65
|
Christensen MV, Hogdall CK, Jochumsen KM
and Hogdall EVS: Annexin A2 and cancer: A systematic review. Int J
Oncol. 52:5–18. 2018.PubMed/NCBI View Article : Google Scholar
|
66
|
Mickleburgh I, Burtle B, Hollas H,
Campbell G, Chrzanowska-Lightowlers Z, Vedeler A and Hesketh J:
Annexin A2 binds to the localization signal in the 3' untranslated
region of c-myc mRNA. FEBS J. 272:413–421. 2005.PubMed/NCBI View Article : Google Scholar
|
67
|
Grewal T, Wason SJ, Enrich C and Rentero
C: Annexins-insights from knockout mice. Biol Chem. 397:1031–1053.
2016.PubMed/NCBI View Article : Google Scholar
|
68
|
Wang T, Wang Z, Niu R and Wang L: Crucial
role of Anxa2 in cancer progression: Highlights on its novel
regulatory mechanism. Cancer Biol Med. 16:671–687. 2019.PubMed/NCBI View Article : Google Scholar
|
69
|
Mayran N, Parton RG and Gruenberg J:
Annexin II regulates multivesicular endosome biogenesis in the
degradation pathway of animal cells. EMBO J. 22:3242–3253.
2003.PubMed/NCBI View Article : Google Scholar
|
70
|
Zobiack N, Rescher U, Ludwig C, Zeuschner
D and Gerke V: The annexin 2/S100A10 complex controls the
distribution of transferrin receptor-containing recycling
endosomes. Mol Biol Cell. 14:4896–4908. 2003.PubMed/NCBI View Article : Google Scholar
|
71
|
Navines-Ferrer A and Martin M: Long-tailed
unconventional class I myosins in health and disease. Int J Mol
Sci. 21(2555)2020.PubMed/NCBI View Article : Google Scholar
|
72
|
Giron-Perez DA, Vadillo E, Schnoor M and
Santos-Argumedo L: Myo1e modulates the recruitment of activated B
cells to inguinal lymph nodes. J Cell Sci.
133(jcs235275)2020.PubMed/NCBI View Article : Google Scholar
|
73
|
Zhang Y, Du W, Chen Z and Xiang C:
Upregulation of PD-L1 by SPP1 mediates macrophage polarization and
facilitates immune escape in lung adenocarcinoma. Exp Cell Res.
359:449–457. 2017.PubMed/NCBI View Article : Google Scholar
|
74
|
Yim A, Smith C and Brown AM:
Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-,
and neuronal cell ligand-receptor interactions to sense and
regulate acute and chronic neuroinflammation. Immunol Rev.
311:224–233. 2022.PubMed/NCBI View Article : Google Scholar
|
75
|
Rosmus DD, Lange C, Ludwig F, Ajami B and
Wieghofer P: The role of osteopontin in microglia biology: Current
concepts and future perspectives. Biomedicines.
10(840)2022.PubMed/NCBI View Article : Google Scholar
|
76
|
De Schepper S, Ge JZ, Crowley G, Ferreira
LSS, Garceau D, Toomey CE, Sokolova D, Rueda-Carrasco J, Shin SH,
Kim JS, et al: Perivascular cells induce microglial phagocytic
states and synaptic engulfment via SPP1 in mouse models of
Alzheimer's disease. Nat Neurosci. 26:406–415. 2023.PubMed/NCBI View Article : Google Scholar
|
77
|
Andoh M and Koyama R: Comparative review
of microglia and monocytes in CNS phagocytosis. Cells.
10(2555)2021.PubMed/NCBI View Article : Google Scholar
|
78
|
Fang YP, Qin ZH, Zhang Y and Ning B:
Implications of microglial heterogeneity in spinal cord injury
progression and therapy. Exp Neurol. 359(114239)2023.PubMed/NCBI View Article : Google Scholar
|
79
|
Kroner A and Almanza JA: Role of microglia
in spinal cord injury. Neurosci Lett. 709(134370)2019.PubMed/NCBI View Article : Google Scholar
|