Resveratrol suppresses hepatic fatty acid synthesis and increases fatty acid β-oxidation via the microRNA-33/SIRT6 signaling pathway
- Authors:
- Chunqiao Liu
- Xinyan Pan
- Zhihua Hao
- Xing Wang
- Chao Wang
- Guangyao Song
-
Affiliations: Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China, Department of Health Care, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China, Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China - Published online on: June 19, 2024 https://doi.org/10.3892/etm.2024.12615
- Article Number: 326
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Joint Committee on Revision of Guidelines for the Prevention and Treatment of Dyslipidemia in Adults. Guidelines for the prevention and treatment of dyslipidemia in Chinese adults (revised edition 2016). Chin Circul J. 31:937–950. 2016. | |
Mensah GA, Fuster V and Roth GA: A heart-healthy and stroke-free world: Using data to inform global action. J Am Coll Cardiol. 82:2343–2349. 2023.PubMed/NCBI View Article : Google Scholar | |
Nelson RH: Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care. 40:195–211. 2013.PubMed/NCBI View Article : Google Scholar | |
Klop B, Elte JW and Cabezas MC: Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients. 5:1218–1240. 2013.PubMed/NCBI View Article : Google Scholar | |
Chen MY, Meng XF, Han YP, Yan JL, Xiao C and Qian LB: Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne). 13(983713)2022.PubMed/NCBI View Article : Google Scholar | |
Song R, Hu M, Qin X, Qiu L, Wang P, Zhang X, Liu R and Wang X: The roles of lipid metabolism in the pathogenesis of chronic diseases in the elderly. Nutrients. 15(3433)2023.PubMed/NCBI View Article : Google Scholar | |
Michos ED, McEvoy JW and Blumenthal RS: Lipid management for the prevention of atherosclerotic cardiovascular disease. N Engl J Med. 381:1557–1567. 2019.PubMed/NCBI View Article : Google Scholar | |
Agbu P and Carthew RW: MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 22:425–438. 2021.PubMed/NCBI View Article : Google Scholar | |
Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ and Fernández-Hernando C: MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 328:1570–1573. 2010.PubMed/NCBI View Article : Google Scholar | |
Marquart TJ, Allen RM, Ory DS and Baldán A: miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA. 107:12228–12232. 2010.PubMed/NCBI View Article : Google Scholar | |
Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE and Näär AM: MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 328:1566–1569. 2010.PubMed/NCBI View Article : Google Scholar | |
Price NL, Goedeke L, Suárez Y and Fernández-Hernando C: miR-33 in cardiometabolic diseases: Lessons learned from novel animal models and approaches. EMBO Mol Med. 13(e12606)2021.PubMed/NCBI View Article : Google Scholar | |
Deng X, Qin S, Chen Y, Liu H, Yuan E, Deng H and Liu S: B-RCA revealed circulating miR-33a/b associates with serum cholesterol in type 2 diabetes patients at high risk of ASCVD. Diabetes Res Clin Pract. 140:191–199. 2018.PubMed/NCBI View Article : Google Scholar | |
Price NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfrán-Duque A, Diaz-Ruiz A, Araldi E, Baldán Á, Camporez JP, et al: Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep. 22:2133–2145. 2018.PubMed/NCBI View Article : Google Scholar | |
Price NL, Rotllan N, Canfrán-Duque A, Zhang X, Pati P, Arias N, Moen J, Mayr M, Ford DA, Baldán Á, et al: Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep. 21:1317–1330. 2017.PubMed/NCBI View Article : Google Scholar | |
Näär AM: miR-33: A metabolic conundrum. Trends Endocrinol Metab. 29:667–668. 2018.PubMed/NCBI View Article : Google Scholar | |
Li T, Francl JM, Boehme S and Chiang JYL: Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology. 58:1111–1121. 2013.PubMed/NCBI View Article : Google Scholar | |
Allen RM, Marquart TJ, Albert CJ, Suchy FJ, Wang DQH, Ananthanarayanan M, Ford DA and Baldán A: miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med. 4:882–895. 2012.PubMed/NCBI View Article : Google Scholar | |
Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C, Fullerton MD, Cecchini K, et al: MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 125:4334–4348. 2015.PubMed/NCBI View Article : Google Scholar | |
Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, Okada Y, Kurihara C, Irie R, Yokoyama H, et al: Free cholesterol accumulation in hepatic stellate cells: Mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology. 59:154–169. 2014.PubMed/NCBI View Article : Google Scholar | |
Price NL, Zhang X, Fernández-Tussy P, Singh AK, Burnap SA, Rotllan N, Goedeke L, Sun J, Canfrán-Duque A, Aryal B, et al: Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proc Natl Acad Sci USA. 118(e2006478118)2021.PubMed/NCBI View Article : Google Scholar | |
Fernández-Tussy P, Sun J, Cardelo MP, Price NL, Goedeke L, Xirouchaki CE, Yang X, Pastor-Rojo O, Bennett AM, Tiganis T, et al: Hepatocyte-specific miR-33 deletion attenuates NAFLD-NASH-HCC progression. bioRxiv [Preprint]: 2023.01.18.523503, 2023. | |
Kang J, Kim H, Mun D, Yun N and Joung B: Co-delivery of curcumin and miRNA-144-3p using heart-targeted extracellular vesicles enhances the therapeutic efficacy for myocardial infarction. J Control Release. 331:62–73. 2021.PubMed/NCBI View Article : Google Scholar | |
Alharris E, Alghetaa H, Seth R, Chatterjee S, Singh NP, Nagarkatti M and Nagarkatti P: Corrigendum: Resveratrol attenuates allergic asthma and associated inflammation in the lungs through regulation of miRNA-34a that targets FoxP3 in mice. Front Immunol. 14(1130947)2023.PubMed/NCBI View Article : Google Scholar | |
Chen WT, Yang MJ, Tsuei YW, Su TC, Siao AC, Kuo YC, Huang LR, Chen Y, Chen SJ, Chen PC, et al: Green tea epigallocatechin gallate inhibits preadipocyte growth via the microRNA-let-7a/HMGA2 signaling pathway. Mol Nutr Food Res. 67(e2200336)2023.PubMed/NCBI View Article : Google Scholar | |
Pezzuto JM: Resveratrol: Twenty years of growth, development and controversy. Biomol Ther (Seoul). 27:1–14. 2019.PubMed/NCBI View Article : Google Scholar | |
Huang X and Zhu H: Resveratrol and its analogues: Promising antitumor agents. Anticancer Agents Med Chem. 11:479–490. 2011.PubMed/NCBI View Article : Google Scholar | |
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG and Mubarak MS: A comprehensive review of the health perspectives of resveratrol. Food Funct. 8:4284–4305. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Yu H, Lin Q, Liu X, Cheng Y and Deng B: Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway. Aging (Albany NY). 13:10659–10671. 2021.PubMed/NCBI View Article : Google Scholar | |
Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S and Banerjee SK: Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol Res. 66:260–268. 2012.PubMed/NCBI View Article : Google Scholar | |
Most J, Timmers S, Warnke I, Jocken JW, van Boekschoten M, de Groot P, Bendik I, Schrauwen P, Goossens GH and Blaak EE: Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial. Am J Clin Nutr. 104:215–227. 2016.PubMed/NCBI View Article : Google Scholar | |
Auger C, Teissedre PL, Gérain P, Lequeux N, Bornet A, Serisier S, Besançon P, Caporiccio B, Cristol JP and Rouanet JM: Dietary wine phenolics catechin, quercetin, and resveratrol efficiently protect hypercholesterolemic hamsters against aortic fatty streak accumulation. J Agric Food Chem. 53:2015–2021. 2005.PubMed/NCBI View Article : Google Scholar | |
Fogacci F, Tocci G, Presta V, Fratter A, Borghi C and Cicero AFG: Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr. 59:1605–1618. 2019.PubMed/NCBI View Article : Google Scholar | |
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P and Gupta SC: Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev. 39:1851–1891. 2019.PubMed/NCBI View Article : Google Scholar | |
Onuki J, Almeida EA, Medeiros MHG and Di Mascio P: Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, quercetin or resveratrol. J Pineal Res. 38:107–115. 2005.PubMed/NCBI View Article : Google Scholar | |
Fujimoto M, Shimizu N, Kunii K, Martyn JAJ, Ueki K and Kaneki M: A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes. 54:1340–1348. 2005.PubMed/NCBI View Article : Google Scholar | |
Yarahmadi S, Farahmandian N, Fadaei R, Koushki M, Bahreini E, Karima S, Barzin Tond S, Rezaei A, Nourbakhsh M and Fallah S: Therapeutic potential of resveratrol and atorvastatin following high-fat diet uptake-induced nonalcoholic fatty liver disease by targeting genes involved in cholesterol metabolism and miR33. DNA Cell Biol. 42:82–90. 2023.PubMed/NCBI View Article : Google Scholar | |
Baselga-Escudero L, Blade C, Ribas-Latre A, Casanova E, Suárez M, Torres JL, Salvado MJ, Arola L and Arola-Arnal A: Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res. 42:882–892. 2014.PubMed/NCBI View Article : Google Scholar | |
Ferdowsian H: Human and animal research guidelines: Aligning ethical constructs with new scientific developments. Bioethics. 25:472–478. 2011.PubMed/NCBI View Article : Google Scholar | |
Hickman DL: Minimal exposure times for irreversible euthanasia with carbon dioxide in mice and rats. J Am Assoc Lab Anim Sci. 61:283–286. 2022.PubMed/NCBI View Article : Google Scholar | |
American Veterinary Medical Association. [Internet]. 2020. AVMA guidelines for the euthanasia of animals. [Cited 12 January 2022.] Available at: https://www.avma.org/sites/default/files/2020-01/2020-Euthanasia-Final-1-17-20.pdf. | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar | |
Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Sowa N, Yahagi N, et al: MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun. 4(2883)2013.PubMed/NCBI View Article : Google Scholar | |
Barwari T, Joshi A and Mayr M: MicroRNAs in cardiovascular disease. J Am Coll Cardiol. 68:2577–2584. 2016.PubMed/NCBI View Article : Google Scholar | |
Olson EN: MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med. 6(239ps3)2014.PubMed/NCBI View Article : Google Scholar | |
Mahtal N, Lenoir O, Tinel C, Anglicheau D and Tharaux PL: MicroRNAs in kidney injury and disease. Nat Rev Nephrol. 18:643–662. 2022.PubMed/NCBI View Article : Google Scholar | |
Wonnacott A, Denby L, Coward RJM, Fraser DJ and Bowen T: MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev. 182(114045)2022.PubMed/NCBI View Article : Google Scholar | |
Ji C and Guo X: The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol. 15:731–743. 2019.PubMed/NCBI View Article : Google Scholar | |
Gerlach CV and Vaidya VS: MicroRNAs in injury and repair. Arch Toxicol. 91:2781–2797. 2017.PubMed/NCBI View Article : Google Scholar | |
Alrob OA, Khatib S and Naser SA: MicroRNAs 33, 122, and 208: A potential novel targets in the treatment of obesity, diabetes, and heart-related diseases. J Physiol Biochem. 73:307–314. 2017.PubMed/NCBI View Article : Google Scholar | |
Baselga-Escudero L, Bladé C, Ribas-Latre A, Casanova E, Salvadó MJ, Arola L and Arola-Arnal A: Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res. 56:1636–1646. 2012.PubMed/NCBI View Article : Google Scholar | |
Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, et al: Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 478:404–407. 2011.PubMed/NCBI View Article : Google Scholar | |
Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Bioactive ingredients in Chinese Herbal medicines that target non-coding RNAs: Promising new choices for disease treatment. Front Pharmacol. 10(515)2019.PubMed/NCBI View Article : Google Scholar | |
Guo G, Zhou J, Yang X, Feng J, Shao Y, Jia T, Huang Q, Li Y, Zhong Y, Nagarkatti PS and Nagarkatti M: Role of MicroRNAs induced by Chinese Herbal medicines against hepatocellular carcinoma: A brief review. Integr Cancer Ther. 17:1059–1067. 2018.PubMed/NCBI View Article : Google Scholar | |
Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu L, Liu Z and Lu L: Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: A follow-up review. Pharmacol Res. 114:1–12. 2016.PubMed/NCBI View Article : Google Scholar | |
Xin H, Kong Y, Wang Y, Zhou Y, Zhu Y, Li D and Tan W: Lignans extracted from Vitex negundo possess cytotoxic activity by G2/M phase cell cycle arrest and apoptosis induction. Phytomedicine. 20:640–647. 2023.PubMed/NCBI View Article : Google Scholar | |
Wu Z, Zhu Q, Yin Y, Kang D, Cao R, Tian Q, Zhang Y, Lu S and Liu P: Traditional Chinese medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer. Cancer Med. 7:1546–1559. 2018.PubMed/NCBI View Article : Google Scholar | |
Cao R, Bai Y, Sun L, Zheng J, Zu M, Du G and Ye P: Xuezhikang therapy increases miR-33 expression in patients with low HDL-C levels. Dis Markers. 2014(781780)2014.PubMed/NCBI View Article : Google Scholar | |
Su D, Liu H, Qi X, Dong L, Zhang R and Zhang J: Citrus peel flavonoids improve lipid metabolism by inhibiting miR-33 and miR-122 expression in HepG2 cells. Biosci Biotechnol Biochem. 83:1747–1755. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang X, Wang L, Zhang Z, Hu J, Liu X, Wen H, Liu M, Zhang X, Dai H, Ni M, et al: Ginsenoside Rb1 enhances plaque stability and inhibits adventitial vasa vasorum via the modulation of miR-33 and PEDF. Front Cardiovasc Med. 8(654670)2021.PubMed/NCBI View Article : Google Scholar | |
Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, et al: Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12:224–236. 2010.PubMed/NCBI View Article : Google Scholar | |
He J, Zhang G, Pang Q, Yu C, Xiong J, Zhu J and Chen F: SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition. FEBS J. 284:1324–1337. 2017.PubMed/NCBI View Article : Google Scholar | |
Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, et al: Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 121:2921–2931. 2011.PubMed/NCBI View Article : Google Scholar | |
Shao F, Wang X, Yu J, Jiang H, Zhu B and Gu Z: Expression of miR-33 from an SREBF2 intron targets the FTO gene in the chicken. PLoS One. 9(e91236)2014.PubMed/NCBI View Article : Google Scholar | |
Zheng Y, Jiang S, Zhang Y, Zhang R and Gong D: Detection of miR-33 expression and the verification of its target genes in the fatty liver of geese. Int J Mol Sci. 16:12737–12752. 2015.PubMed/NCBI View Article : Google Scholar | |
D'Onofrio N, Sardu C, Paolisso P, Minicucci F, Gragnano F, Ferraraccio F, Panarese I, Scisciola L, Mauro C, Rizzo MR, et al: MicroRNA-33 and SIRT1 influence the coronary thrombus burden in hyperglycemic STEMI patients. J Cell Physiol. 235:1438–1452. 2020.PubMed/NCBI View Article : Google Scholar | |
Gnanaguru G, Wagschal A, Oh J, Saez-Torres KL, Li T, Temel RE, Kleinman ME, Näär AM and D'Amore PA: Targeting of miR-33 ameliorates phenotypes linked to age-related macular degeneration. Mol Ther. 29:2281–2293. 2021.PubMed/NCBI View Article : Google Scholar | |
Yerlikaya FH, Can U, Alpaydin MS and Aribas A: The relationship between plasma microRNAs and serum trace elements levels in primary hyperlipidemia. Bratisl Lek Listy. 120:344–348. 2019.PubMed/NCBI View Article : Google Scholar | |
Simionescu N, Niculescu LS, Sanda GM, Margina D and Sima AV: Analysis of circulating microRNAs that are specifically increased in hyperlipidemic and/or hyperglycemic sera. Mol Biol Rep. 41:5765–5773. 2014.PubMed/NCBI View Article : Google Scholar | |
Marmorstein R: Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochem Soc Trans. 32:904–909. 2004.PubMed/NCBI View Article : Google Scholar | |
Kanfi Y, Peshti V, Gil R, Naiman S, Nahum L, Levin E, Kronfeld-Schor N and Cohen HY: SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell. 9:162–173. 2010.PubMed/NCBI View Article : Google Scholar | |
Hong J, Mei C, Abbas Raza SH, Khan R, Cheng G and Zan L: SIRT6 cooperates with SIRT5 to regulate bovine preadipocyte differentiation and lipid metabolism via the AMPKα signaling pathway. Arch Biochem Biophys. 681(108260)2020.PubMed/NCBI View Article : Google Scholar | |
Yang Q, Hu J, Yang Y, Chen Z, Feng J, Zhu Z, Wang H, Yang D, Liang W and Ding G: Sirt6 deficiency aggravates angiotensin II-induced cholesterol accumulation and injury in podocytes. Theranostics. 10:7465–7479. 2020.PubMed/NCBI View Article : Google Scholar | |
Tao R, Xiong X, DePinho RA, Deng CX and Dong XC: Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res. 54:2745–2753. 2013.PubMed/NCBI View Article : Google Scholar | |
Elhanati S, Kanfi Y, Varvak A, Roichman A, Carmel-Gross I, Barth S, Gibor G and Cohen HY: Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep. 4:905–912. 2013.PubMed/NCBI View Article : Google Scholar | |
Guo Z, Li P, Ge J and Li H: SIRT6 in aging, metabolism, inflammation and cardiovascular diseases. Aging Dis. 13:1787–1822. 2022.PubMed/NCBI View Article : Google Scholar | |
Naiman S, Huynh FK, Gil R, Glick Y, Shahar Y, Touitou N, Nahum L, Avivi MY, Roichman A, Kanfi Y, et al: SIRT6 promotes hepatic beta-oxidation via activation of PPARα. Cell Rep. 29:4127–4143.e8. 2019.PubMed/NCBI View Article : Google Scholar | |
Ambele MA, Dhanraj P, Giles R and Pepper MS: Adipogenesis: A complex interplay of multiple molecular determinants and pathways. Int J Mol Sci. 21(4283)2020.PubMed/NCBI View Article : Google Scholar | |
Brewer M, Lange D, Baler R and Anzulovich A: SREBP-1 as a transcriptional integrator of circadian and nutritional cues in the liver. J Biol Rhythms. 20:195–205. 2005.PubMed/NCBI View Article : Google Scholar | |
Prodanović R, Korićanac G, Vujanac I, Djordjević A, Pantelić M, Romić S, Stanimirović Z and Kirovski D: Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression. Res Vet Sci. 107:16–19. 2016.PubMed/NCBI View Article : Google Scholar | |
Feng T, Li S, Zhao G, Li Q, Yuan H, Zhang J, Gu R, Ou D, Guo Y, Kou Q, et al: DDX39B facilitates the malignant progression of hepatocellular carcinoma via activation of SREBP1-mediated de novo lipid synthesis. Cell Oncol (Dordr). 46:1235–1252. 2023.PubMed/NCBI View Article : Google Scholar | |
Abukhalil MH, Hussein OE, Bin-Jumah M, Saghir SAM, Germoush MO, Elgebaly HA, Mosa NM, Hamad I, Qarmush MM, Hassanein EM, et al: Farnesol attenuates oxidative stress and liver injury and modulates fatty acid synthase and acetyl-CoA carboxylase in high cholesterol-fed rats. Environ Sci Pollut Res Int. 27:30118–30132. 2020.PubMed/NCBI View Article : Google Scholar | |
Kastaniotis AJ, Autio KJ, Kerätär JM, Monteuuis G, Mäkelä AM, Nair RR, Pietikäinen LP, Shvetsova A, Chen Z and Hiltunen JK: Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:39–48. 2017.PubMed/NCBI View Article : Google Scholar | |
Peng X, Li J, Wang M, Qu K and Zhu H: A novel AMPK activator improves hepatic lipid metabolism and leukocyte trafficking in experimental hepatic steatosis. J Pharmacol Sci. 140:153–161. 2019.PubMed/NCBI View Article : Google Scholar | |
Mørkholt AS, Oklinski MK, Larsen A, Bockermann R, Issazadeh-Navikas S, Nieland JGK, Kwon TH, Corthals A, Nielsen S and Nieland JDV: Pharmacological inhibition of carnitine palmitoyl transferase 1 inhibits and reverses experimental autoimmune encephalitis in rodents. PLoS One. 15(e0234493)2020.PubMed/NCBI View Article : Google Scholar | |
Song S, Attia RR, Connaughton S, Niesen MI, Ness GC, Elam MB, Hori RT, Cook GA and Park EA: Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol Cell Endocrinol. 325:54–63. 2010.PubMed/NCBI View Article : Google Scholar | |
Schlaepfer IR and Joshi M: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. 161(bqz046)2020.PubMed/NCBI View Article : Google Scholar | |
Sabry MM, Dawood AF, Rashed LA, Sayed SM, Hassan S and Younes SF: Relation between resistin, PPAR-γ, obesity and atherosclerosis in male albino rats. Arch Physiol Biochem. 126:389–398. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Ma K, Song S, Elam MB, Cook GA and Park EA: Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). J Biol Chem. 279:53963–53971. 2004.PubMed/NCBI View Article : Google Scholar |