1
|
Ramsey IS, Delling M and Clapham DE: An
introduction to TRP channels. Annu Rev Physiol. 68:619–647.
2006.PubMed/NCBI View Article : Google Scholar
|
2
|
Venkatachalam K and Montell C: TRP
channels. Annu Rev Biochem. 76:387–417. 2007.PubMed/NCBI View Article : Google Scholar
|
3
|
Zholos AV: TRPC5. Handb Exp Pharmacol.
222:129–156. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Won J, Kim J, Jeong H, Kim J, Feng S,
Jeong B, Kwak M, Ko J, Im W, So I and Lee HH: Molecular
architecture of the Gαi-bound TRPC5 ion channel. Nat Commun.
14(2550)2023.PubMed/NCBI View Article : Google Scholar
|
5
|
Du SL, Jia ZQ, Zhong JC and Wang LF: TRPC5
in cardiovascular diseases. Rev Cardiovasc Med. 22:127–135.
2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Dietrich A, Chubanov V, Kalwa H, Rost BR
and Gudermann T: Cation channels of the transient receptor
potential superfamily: Their role in physiological and
pathophysiological processes of smooth muscle cells. Pharmacol
Ther. 112:744–760. 2006.PubMed/NCBI View Article : Google Scholar
|
7
|
Peng G, Lu W, Li X, Chen Y, Zhong N, Ran P
and Wang J: Expression of store-operated Ca2+ entry and transient
receptor potential canonical and vanilloid-related proteins in rat
distal pulmonary venous smooth muscle. Am J Physiol Lung Cell Mol
Physiol. 299:L621–L630. 2010.PubMed/NCBI View Article : Google Scholar
|
8
|
Lu W, Wang J, Shimoda LA and Sylvester JT:
Differences in STIM1 and TRPC expression in proximal and distal
pulmonary arterial smooth muscle are associated with differences in
Ca2+ responses to hypoxia. Am J Physiol Lung Cell Mol Physiol.
295:L104–L113. 2008.PubMed/NCBI View Article : Google Scholar
|
9
|
White TA, Xue A, Chini EN, Thompson M,
Sieck GC and Wylam ME: Role of transient receptor potential C3 in
TNF-alpha-enhanced calcium influx in human airway myocytes. Am J
Respir Cell Mol Biol. 35:243–251. 2006.PubMed/NCBI View Article : Google Scholar
|
10
|
Ong HL, Brereton HM, Harland ML and
Barritt GJ: Evidence for the expression of transient receptor
potential proteins in guinea pig airway smooth muscle cells.
Respirology. 8:23–32. 2003.PubMed/NCBI View Article : Google Scholar
|
11
|
Lembrechts R, Brouns I, Schnorbusch K,
Pintelon I, Timmermans JP and Adriaensen D: Neuroepithelial bodies
as mechanotransducers in the intrapulmonary airway epithelium:
involvement of TRPC5. Am J Respir Cell Mol Biol. 47:315–323.
2012.PubMed/NCBI View Article : Google Scholar
|
12
|
Domnik NJ and Cutz E: Pulmonary
neuroepithelial bodies as airway sensors: Putative role in the
generation of dyspnea. Curr Opin Pharmacol. 11:211–217.
2011.PubMed/NCBI View Article : Google Scholar
|
13
|
Wu J, Li Z, Deng Y, Lu X, Luo C, Mu X,
Zhang T, Liu Q, Tang S, Li J, et al: Function of TRP channels in
monocytes/macrophages. Front Immunol. 14(1187890)2023.PubMed/NCBI View Article : Google Scholar
|
14
|
Tao L, Guo G, Qi Y, Xiong Y, Ma X, Wu N,
Dong C and Yang C: Inhibition of canonical transient receptor
potential 5 channels polarizes macrophages to an M1 phenotype.
Pharmacology. 105:202–208. 2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Pereira DMS, Mendes SJF, Alawi K, Thakore
P, Aubdool A, Sousa NCF, da Silva JFR, Castro JA Jr, P Pereira IC,
Silva LCN, et al: Transient receptor potential canonical Channels 4
and 5 mediate Escherichia coli-Derived thioredoxin effects
in lipopolysaccharide-injected mice. Oxid Med Cell Longev.
2018(4904696)2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Yang J, Cheng Y, Nie Y, Tian B, Huang J,
Gong R, Li Z, Zhu J and Gong Y: TRPC5 expression promotes the
proliferation and invasion of papillary thyroid carcinoma through
the HIF-1α/Twist pathway. Transl Oncol. 39(101809)2024.PubMed/NCBI View Article : Google Scholar
|
17
|
Chen Z, Zhu Y, Dong Y, Zhang P, Han X, Jin
J and Ma X: Overexpression of TrpC5 promotes tumor metastasis via
the HIF-1α-Twist signaling pathway in colon cancer. Clin Sci
(Lond). 131:2439–2450. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
He DX and Ma X: Transient receptor
potential channel C5 in cancer chemoresistance. Acta Pharmacol Sin.
37:19–24. 2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Janczyk P, Weigner J, Luebke-Becker A,
Kaessmeyer S and Plendl J: Nitrite pickling salt as an alternative
to formaldehyde for embalming in veterinary anatomy-A study based
on histo- and microbiological analyses. Ann Anat. 193:71–75.
2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Werner M, Chott A, Fabiano A and Battifora
H: Effect of formalin tissue fixation and processing on
immunohistochemistry. Am J Surg Pathol. 24:1016–1019.
2000.PubMed/NCBI View Article : Google Scholar
|
21
|
Ramos-Vara JA: Technical aspects of
immunohistochemistry. Vet Pathol. 42:405–426. 2005.PubMed/NCBI View Article : Google Scholar
|
22
|
Bush EW, Hood DB, Papst PJ, Chapo JA,
Minobe W, Bristow MR, Olson EN and McKinsey TA: Canonical transient
receptor potential channels promote cardiomyocyte hypertrophy
through activation of calcineurin signaling. J Biol Chem.
281:33487–33496. 2006.PubMed/NCBI View Article : Google Scholar
|
23
|
Diebolt CM, Schaudien D, Junker K,
Krasteva-Christ G, Tschernig T and Englisch CN: New insights in the
renal distribution profile of TRPC3-Of mice and men. Ann Anat.
252(152192)2024.PubMed/NCBI View Article : Google Scholar
|
24
|
Okoh GR, Kazeem HM, Kia GSN and Ponfa ZN:
Heat induced epitope retrieval for rabies virus detection by direct
fluorescent antibody test in formalin-fixed dog brain tissues. Open
Vet J. 8:313–317. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
De March Z, Giampà C, Patassini S,
Bernardi G and Fusco FR: Cellular localization of TRPC5 in the
substantia nigra of rat. Neurosci Lett. 402:35–39. 2006.PubMed/NCBI View Article : Google Scholar
|
26
|
Englisch CN, Steinhäuser J, Wemmert S,
Jung M, Gawlitza J, Wenzel G, Schick B and Tschernig T:
Immunohistochemistry reveals TRPC Channels in the human hearing
organ-A novel CT-guided approach to the cochlea. Int J Mol Sci.
24(9290)2023.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhu Y, Gao M, Zhou T, Xie M, Mao A, Feng
L, Yao X, Wong WT and Ma X: The TRPC5 channel regulates
angiogenesis and promotes recovery from ischemic injury in mice. J
Biol Chem. 294:28–37. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Bordet G, Lodhi N, Kossenkov A and Tulin
A: Age-Related changes of gene expression profiles in drosophila.
Genes (Basel). 12(1982)2012.PubMed/NCBI View Article : Google Scholar
|
29
|
Cocariu EA, Mageriu V, Stăniceanu F,
Bastian A, Socoliuc C and Zurac S: Correlations between the
autolytic changes and postmortem interval in refrigerated cadavers.
Rom J Intern Med. 54:105–112. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Poloz YO and O'Day DH: Determining time of
death: Temperature-dependent postmortem changes in calcineurin A,
MARCKS, CaMKII, and protein phosphatase 2A in mouse. Int J Legal
Med. 123:305–314. 2009.PubMed/NCBI View Article : Google Scholar
|
31
|
Aegerter H, Lambrecht BN and Jakubzick CV:
Biology of lung macrophages in health and disease. Immunity.
55:1564–1580. 2022.PubMed/NCBI View Article : Google Scholar
|
32
|
Malainou C, Abdin SM, Lachmann N, Matt U
and Herold S: Alveolar macrophages in tissue homeostasis,
inflammation, and infection: Evolving concepts of therapeutic
targeting. J Clin Invest. 133(e170501)2023.PubMed/NCBI View Article : Google Scholar
|
33
|
Liu BB, Peng YB, Zhang WJ, Zhao XX, Chen
LP, Liu MS, Wang GG, Liu YJ, Shen J, Zhao P, et al: NS8593 inhibits
Ca2+ permeant channels reversing mouse airway smooth
muscle contraction. Life Sci. 238(116953)2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Chen YY, Yu MF, Zhao XX, Shen J, Peng YB,
Zhao P, Xue L, Chen W, Ma LQ, Qin G, et al: Paracetamol inhibits
Ca2+ permeant ion channels and Ca2+
sensitization resulting in relaxation of precontracted airway
smooth muscle. J Pharmacol Sci. 142:60–68. 2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Koopmans T, Anaparti V, Castro-Piedras I,
Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JP and
Wright DB: Ca2+ handling and sensitivity in airway smooth muscle:
Emerging concepts for mechanistic understanding and therapeutic
targeting. Pulm Pharmacol Ther. 29:108–120. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Chen J, Zhang M, Liu Y, Zhao S, Wang Y,
Wang M, Niu W, Jin F and Li Z: Histone lactylation driven by
mROS-mediated glycolytic shift promotes hypoxic pulmonary
hypertension. J Mol Cell Biol. 14(mjac073)2023.PubMed/NCBI View Article : Google Scholar
|
37
|
Sharma S and Hopkins CR: Review of
transient receptor potential canonical (TRPC5) channel modulators
and diseases. J Med Chem. 62:7589–7602. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Richter JM, Schaefer M and Hill K:
Clemizole hydrochloride is a novel and potent inhibitor of
transient receptor potential channel TRPC5. Mol Pharmacol.
86:514–521. 2014.PubMed/NCBI View Article : Google Scholar
|
39
|
Walsh L, Reilly JF, Cornwall C, Gaich GA,
Gipson DS, Heerspink HJL, Johnson L, Trachtman H, Tuttle KR, Farag
YMK, et al: Safety and efficacy of GFB-887, a TRPC5 channel
inhibitor, in patients with focal segmental glomerulosclerosis,
treatment-resistant minimal change disease, or diabetic
nephropathy: TRACTION-2 trial design. Kidney Int Rep. 6:2575–2584.
2021.PubMed/NCBI View Article : Google Scholar
|