Congenital kyphoscoliosis: Analysis of vertebral abnormalities using model animals (Review)
- Authors:
- Tomohiko Sato
- Itsuki Takahashi
- Yusuke Watanabe
- Daiki Yokoyama
- Noriaki Shimokawa
-
Affiliations: Department of Physical Therapy, Ota College of Medical Technology, Ota, Gunma 373‑0812, Japan, Department of Nutrition, Takasaki University Graduate School of Health and Welfare, Takasaki, Gunma 370‑0033, Japan - Published online on: September 4, 2024 https://doi.org/10.3892/etm.2024.12705
- Article Number: 416
-
Copyright: © Sato et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Frost BA, Camarero-Espinosa S and Foster EJ: Materials for the Spine: Anatomy, problems, and solutions. Materials (Basel). 12(253)2019.PubMed/NCBI View Article : Google Scholar | |
Galbusera F: The spine: Its evolution, function, and shape. In: Biomechanics of the Spine Basic Concepts, Spinal Disorders and Treatments. Galbusera F and Wilke HJ (eds). Academic Press, New York, NY, pp3-9, 2018. | |
Izzoa R, Guarnieria G, Guglielmib G and Muto M: Biomechanics of the spine. Part I: Spinal stability. Eur J Radiol. 82:118–126. 2013.PubMed/NCBI View Article : Google Scholar | |
Goldberg CJ, Moore DP, Fogarty EE and Dowling FE: Scoliosis: A review. Pediatr Surg Int. 24:129–144. 2008.PubMed/NCBI View Article : Google Scholar | |
Goldstein LA and Waugh TR: Classification and terminology of scoliosis. Clin Orthop Relat Res. 93:10–22. 1973.PubMed/NCBI View Article : Google Scholar | |
Agabegi ED and Agabegi SS: Step-Up to Medicine (Step-Up Series). Lippincott Williams & Wilkins., Philadelphia PH, pp90, 2008. | |
Giampietro PF: Genetic aspects of congenital and idiopathic scoliosis. Scientifica (Cairo). 2012(152365)2012.PubMed/NCBI View Article : Google Scholar | |
Giampietro PF, Raggio CL, Blank RD, McCarty C, Broeckel U and Pickart MA: Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol. 4:94–105. 2013.PubMed/NCBI View Article : Google Scholar | |
Janssen MM, de Wilde RF, Kouwenhoven JW and Castelein RM: Experimental animal models in scoliosis research: A review of the literature. Spine J. 11:347–358. 2011.PubMed/NCBI View Article : Google Scholar | |
Shimokawa N, Takahashi I and Iizuka H: Spinal malformation-A biochemical analysis using congenital kyphosis rats. J Cell Biochem. 123:501–505. 2022.PubMed/NCBI View Article : Google Scholar | |
Terhune EA, Heyn PC, Piper CR and Hadley-Miller N: Genetic variants associated with the occurrence and progression of adolescent idiopathic scoliosis: A systematic review protocol. Syst Rev. 11(118)2022.PubMed/NCBI View Article : Google Scholar | |
Qiu Y, Mao SH, Qian BP, Jiang J, Qui XS, Zhao Q and Liu Z: A promoter polymorphism of neurotrophin 3 gene is associated with curve severity and bracing effectiveness in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 37:127–133. 2012.PubMed/NCBI View Article : Google Scholar | |
Ryzhkov II, Borzilov EE, Churnosov MI, Ataman AV, Dedkov AA and Polonikov AV: Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 38:E699–E704. 2013.PubMed/NCBI View Article : Google Scholar | |
Ogura Y, Kou I, Miura S, Takahashi A, Xu L, Takeda K, Takahashi Y, Kono K, Kawakami N, Uno K, et al: A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet. 97:337–342. 2015.PubMed/NCBI View Article : Google Scholar | |
Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, et al: A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 43:1237–1240. 2011.PubMed/NCBI View Article : Google Scholar | |
Guo L, Yamashita H, Kou I, Takimoto A, Mrguro-Horie M, Horike S, Sakuma T, Miura S, Adachi T, Tamamoto T, et al: Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: Elevated expression of the ladybird homeobox gene causes body axis deformation. PLoS Genet. 12(e1005802)2016.PubMed/NCBI View Article : Google Scholar | |
Kou I, Takahashi Y, Johnson TA, Tkahashi A, Guo L, Dai J, Qiu X, Sharma S, Takimoto A, Ogura Y, et al: Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 45:676–679. 2013.PubMed/NCBI View Article : Google Scholar | |
De Salvatore S, Ruzzini L, Longo UG, Marino M, Greco A, Piergentili I, Costici PF and Denaro V: Exploring the association between specific genes and the onset of idiopathic scoliosis: A systematic review. BMC Med Genomics. 15(115)2022.PubMed/NCBI View Article : Google Scholar | |
Fei Q, Wu Z, Wang H, Zhou X, Wang N, Ding Y, Wang Y and Qiu G: The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine (Phila Pa 1976). 35:983–988. 2010.PubMed/NCBI View Article : Google Scholar | |
Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M, Shen Y, Yu G, Liu J, Xie H, et al: TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med. 372:341–350. 2015.PubMed/NCBI View Article : Google Scholar | |
Takeda K, Kou I, Kawakami N, Iida A, Nakajima M, Ogura Y, Imagawa E, Miyake N, Matsumoto N, Yasuhiko Y, et al: Compound heterozygosity for null mutations and a common hypomorphic risk haplotype in TBX6 causes congenital scoliosis. Hum Mutat. 38:317–323. 2017.PubMed/NCBI View Article : Google Scholar | |
Otomo N, Takeda K, Kawai S, Kou I, Guo L, Osawa M, Alev C, Kawakami N, Miyake N, Matsumoto N, et al: Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis. J Med Genet. 56:622–628. 2019.PubMed/NCBI View Article : Google Scholar | |
Chapman DL, Agulnik I, Hancock S, Silver LM and Papaioannou VE: Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev Biol. 180:534–542. 1996.PubMed/NCBI View Article : Google Scholar | |
Sadahiro T, Isomi M, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, Tamura F, Tani H, Tohyama S, Fujita J, et al: Tbx6 induces nascent mesoderm from pluripotent stem cells and temporally controls cardiac versus somite lineage diversification. Cell Stem Cell. 23:382–395.e5. 2018.PubMed/NCBI View Article : Google Scholar | |
Chapman DL and Papaioannou VE: Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature. 391:695–697. 1998.PubMed/NCBI View Article : Google Scholar | |
Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE and Kondoh H: Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature. 470:394–398. 2011.PubMed/NCBI View Article : Google Scholar | |
Takeda K, Kou I, Mizumoto S, Yamada S, Kawakami N, Nakajima M, Otomo N, Ogura Y, Miyake N, Matsumoto N, et al: Screening of known disease genes in congenital scoliosis. Mol Genet Genomic Med. 6:966–974. 2018.PubMed/NCBI View Article : Google Scholar | |
Turnpenny PD, Sloman M, Dunwoodie S, Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al: Spondylocostal Dysostosis, Autosomal Recessive. 2009 Aug 25 (Updated 2023 Aug 17). Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW and Amemiya A (eds). GeneReviews, Seattle, WA, 1993. | |
Oda I, Cunningham BW, Buckley RA, Goebel MJ, Haggerty CJ, Orbegoso CM and McAfee PC: Does spinal kyphotic deformity influence the biomechanical characteristics of the adjacent motion segments? An in vivo animal model. Spine (Phila Pa 1976). 24:2139–2146. 1999.PubMed/NCBI View Article : Google Scholar | |
Chae U, Park NR, Kim ES, Choi JY, Yim M, Lee HS, Lee SR, Lee S, Paerk JW and Lee DS: IDH2-deficient mice develop spinal deformities with aging. Physiol Res. 67:487–494. 2018.PubMed/NCBI View Article : Google Scholar | |
Zaghini A, Sarli G, Barboni C, Sanapo M, Pellegrino V, Diana A, Linta N, Rambaldi J, D'Apice MR, Murdocca M, et al: Long term breeding of the Lmna G609G progeric mouse: Characterization of homozygous and heterozygous models. Exp Gerontol. 130(110784)2020.PubMed/NCBI View Article : Google Scholar | |
Torres HM, Rodezno-Antunes T, VanCleave A, Cao Y, Callahan DL, Westendorf JJ and Tao J: Precise detection of a murine germline mutation of the Notch3 gene associated with kyphosis and developmental disorders. J Adv Vet Anim Res. 8:7–13. 2021.PubMed/NCBI View Article : Google Scholar | |
Ishibashi M: Congenital vertebral malformation (Ishibashi rats). In: Handbook on Animal Models of Human Diseases. Kawamata J and Matushita H (eds). Ishiyaku Shuppan, Tokyo, pp430-434, 1979. | |
Seki T, Shimokawa N, Iizuka H, Takagishi K and Koibuchi N: Abnormalities of vertebral formation and Hox expression in congenital kyphoscoliotic rat. Mol Cell Biochem. 312:193–199. 2008.PubMed/NCBI View Article : Google Scholar | |
Esapa CT, Piret SE, Nesbit MA, Thomas GP, Coulton LA, Gallagher OM, Simon MM, Kumar S, Mallon AM, Bellantuono I, et al: An N-Ethyl-N-Nitrosourea (ENU) mutagenized mouse model for autosomal dominant nonsyndromic kyphoscoliosis due to vertebral fusion. JBMR Plus. 2:154–163. 2018.PubMed/NCBI View Article : Google Scholar | |
Moritake S, Yamamuro T, Yamada J and Watanabe H: Progression of congenital kyphosis in Ishibashi rats. Acta Orthop Scand. 53:841–846. 1983.PubMed/NCBI View Article : Google Scholar | |
Moritake S, Yamamuro T and Yamada J: Effects of sex hormones on congenital kyphosis in Ishibashi rats. Acta Orthop Scand. 57:62–66. 1986.PubMed/NCBI View Article : Google Scholar | |
Maekawa R, Yamada J and Nikaido H: Genetical studies of low plasma alkaline phosphatase (ALP) activity in the IS strain of rats. Jikken Dobutsu. 31:13–19. 1982.PubMed/NCBI View Article : Google Scholar | |
Yamada J, Nikaido H, Moritake S and Maekawa R: Genetic analyses of the vertebral anomalies of the IS strain of rat and the development of a BN congenic line with the anomalies. Lab Anim. 16:40–47. 1982.PubMed/NCBI View Article : Google Scholar | |
Takano M, Katsumata Y, Ogawa J, Ebata T, Urasoko Y, Asano Y, Serikawa T and Kuramoto T: Morphological features of mutant rat, IS-Tlk/Kyo, fetuses with caudal vertebral anomalies. Congenit Anom (Kyoto). 52:42–47. 2012.PubMed/NCBI View Article : Google Scholar | |
Takano M, Ogawa E, Saitou T, Yamaguchi Y, Asano Y, Serikawa T and Kuramoto T: Morphological features of adult rats of IS/Kyo and IS-Tlk/Kyo strains with lumbar and caudal vertebral anomalies. Exp Anim. 63:269–275. 2014.PubMed/NCBI View Article : Google Scholar | |
Satokata I, Benson G and Maas R: Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature. 374:460–463. 1995.PubMed/NCBI View Article : Google Scholar | |
Favier B, Rijli FM, Fromental-Ramain C, Fraulob V, Chambon P and Dollé P: Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development. 122:449–460. 1996.PubMed/NCBI View Article : Google Scholar | |
Davis AP, Witte DP, Hsieh-Li HM, Potter SS and Capecchi MR: Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature. 375:791–795. 1995.PubMed/NCBI View Article : Google Scholar | |
Boulet AM and Capecchi MR: Duplication of the Hoxd11 gene causes alterations in the axial and appendicular skeleton of the mouse. Dev Biol. 249:96–107. 2002.PubMed/NCBI View Article : Google Scholar | |
Tsunoda D, Iizuka H, Ichinose T, Iizuka Y, Mieda T, Shimokawa N, Takagishi K and Koibuchi N: The Trk family of neurotrophin receptors is downregulated in the lumbar spines of rats with congenital kyphoscoliosis. Mol Cell Biochem. 412:11–18. 2016.PubMed/NCBI View Article : Google Scholar | |
Sonoda H, Iizuka H, Ishiwata S, Tsunoda D, Abe M, Takagishi K, Chikuda H, Koibuchi N and Shimokawa N: The retinol-retinoic acid metabolic pathway is impaired in the lumbar spine of a rat model of congenital kyphoscoliosis. J Cell Biochem. 120:15007–15017. 2019.PubMed/NCBI View Article : Google Scholar | |
Ishiwata S, Iizuka H, Sonoda H, Tsunoda D, Tajika Y, Chikuda H, Koibuchi N and Shimokawa N: Upregulated miR-224-5p suppresses osteoblast differentiation by increasing the expression of Pai-1 in the lumbar spine of a rat model of congenital kyphoscoliosis. Mol Cell Biochem. 475:53–62. 2020.PubMed/NCBI View Article : Google Scholar | |
Maskos U and Southern EM: A novel method for the analysis of multiple sequence variants by hybridisation to oligonucleotides. Nucleic Acids Res. 21:2267–2268. 1993.PubMed/NCBI View Article : Google Scholar | |
Schena M, Shalon D, Davis RW and Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270:467–470. 1995.PubMed/NCBI View Article : Google Scholar | |
Emili AQ and Cagney G: Large-scale functional analysis using peptide or protein arrays. Nat Biotechnol. 18:393–397. 2000.PubMed/NCBI View Article : Google Scholar | |
Uren RT and Turnley AM: Regulation of neurotrophin receptor (Trk) signaling: Suppressor of cytokines signaling 2 (SOCS2) is a new player. Front Mol Neurosci. 7(39)2014.PubMed/NCBI View Article : Google Scholar | |
Tomlinson RE, Li Z, Zhang Q, Goh BC, Li Z, Thorek DLJ, Rajbhandari L, Brushart TM, Minichiello L, Zhou F, et al: NGF-TrkA signaling by sensory nerves coordinates the vascularization and ossification of developing endochondral bone. Cell Rep. 16:2723–2735. 2016.PubMed/NCBI View Article : Google Scholar | |
Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL and James AW: Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest. 129:5137–5150. 2019.PubMed/NCBI View Article : Google Scholar | |
Rivera KO, Russo F, Boileau RM, Tomlinson RE, Miclau T, Marcucio RS, Desai TA and Bahney CS: Local injections of beta-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. Sci Rep. 10(22241)2020.PubMed/NCBI View Article : Google Scholar | |
Wheeler EF, Gong H, Grimes R, Benoit D and Vazquez L: p75NTR and Trk receptors are expressed in reciprocal patterns in a wide variety of non-neural tissues during rat embryonic development, indicating independent receptor functions. J Comp Neurol. 391:407–428. 1998.PubMed/NCBI | |
Yamashiro T, Fukunaga T, Yamashita K, Kobashi N and Takano-Yamamoto T: Gene and protein expression of brain-derived neurotrophic factor and TrkB in bone and cartilage. Bone. 28:404–409. 2001.PubMed/NCBI View Article : Google Scholar | |
Hutchison MR: BDNF alters ERK/p38 MAPK activity ratios to promote differentiation in growth plate chondrocytes. Mol Endocrinol. 26:1406–1416. 2012.PubMed/NCBI View Article : Google Scholar | |
Hutchison MR: Mice with a conditional deletion of the neurotrophin receptor TrkB are dwarfed, and are similar to mice with a MAPK14 deletion. PLoS One. 8(e66206)2013.PubMed/NCBI View Article : Google Scholar | |
Asaumi K, Nakanishi T, Asahara H, Inoue H and Takigawa M: Expression of neurotrophins and their receptors (TRK) during fracture healing. Bone. 26:625–633. 2000.PubMed/NCBI View Article : Google Scholar | |
Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, et al: Neurotrophin-3 induces BMP-2 and VEGF activities and promotes the bony repair of injured growth plate cartilage and bone in rats. J Bone Miner Res. 31:1258–1274. 2016.PubMed/NCBI View Article : Google Scholar | |
Blomhoff R and Blomhoff HK: Overview of retinoid metabolism and function. J Neurobiol. 66:606–630. 2006.PubMed/NCBI View Article : Google Scholar | |
See AW, Kaiser ME, White JC and Clagett-Dame M: A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development. Dev Biol. 316:171–190. 2008.PubMed/NCBI View Article : Google Scholar | |
Li Z, Shen J, Wu WK, Wang X, Liang J, Qiu G and Liu J: Vitamin A deficiency induces congenital spinal deformities in rats. PLoS One. 7(e46565)2012.PubMed/NCBI View Article : Google Scholar | |
Amengual J, Zhang N, Kemerer M, Maeda T, Palczewski K and Von Lintig J: STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum Mol Genet. 23:5402–5417. 2014.PubMed/NCBI View Article : Google Scholar | |
Boncinelli E, Simeone A, Acampora D and Mavilio F: HOX gene activation by retinoic acid. Trends Genet. 7:329–334. 1991.PubMed/NCBI View Article : Google Scholar | |
Marshall H, Morrison A, Studer M, Pöpperl H and Krumlauf R: Retinoids and Hox genes. FASEB J. 10:969–978. 1996.PubMed/NCBI | |
Wellik DM and Capecchi MR: Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 301:363–367. 2003.PubMed/NCBI View Article : Google Scholar | |
Rogers MB: Receptor-selective retinoids implicate retinoic acid receptor alpha and gamma in the regulation of bmp-2 and bmp-4 in F9 embryonal carcinoma cells. Cell Growth Differ. 7:115–122. 1996.PubMed/NCBI | |
Kobayashi M, Fujii M, Kurihara K and Matsuoka I: Bone morphogenetic protein-2 and retinoic acid induce neurotrophin-3 responsiveness in developing rat sympathetic neurons. Brain Res Mol Brain Res. 53:206–217. 1998.PubMed/NCBI View Article : Google Scholar | |
Nordin BE: Calcium and osteoporosis. Nutrition. 13:664–686. 1997.PubMed/NCBI View Article : Google Scholar | |
Matikainen N, Pekkarinen T, Ryhänen EM and Schalin-Jäntti C: Physiology of calcium homeostasis: An overview. Endocrinol Metab Clin North Am. 50:575–590. 2021.PubMed/NCBI View Article : Google Scholar | |
Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J and Hebert SC: Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature. 366:575–580. 1993.PubMed/NCBI View Article : Google Scholar | |
Cianferotti L, Gomes AR, Fabbri S, Tanini A and Brandi ML: The calcium-sensing receptor in bone metabolism: From bench to bedside and back. Osteoporos Int. 26:2055–2071. 2015.PubMed/NCBI View Article : Google Scholar | |
Takahashi I, Watanabe Y, Sonoda H, Tsunoda D, Amano I, Koibuchi N, Iizuka H and Shimokawa N: Calcium sensing and signaling are impaired in the lumbar spine of a rat model of congenital kyphosis. Eur Spine J. 32:3403–3412. 2023.PubMed/NCBI View Article : Google Scholar | |
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD and Julius D: The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature. 389:816–824. 1997.PubMed/NCBI View Article : Google Scholar | |
Lieben L and Carmeliet G: The involvement of TRP channels in bone homeostasis. Front Endocrinol (Lausanne). 3(99)2012.PubMed/NCBI View Article : Google Scholar | |
Liu N, Lu W, Dai X, Qu X and Zhu C: The role of TRPV channels in osteoporosis. Mol Biol Rep. 49:577–585. 2022.PubMed/NCBI View Article : Google Scholar | |
Idris AI, Landao-Bassonga E and Ralston SH: The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone. 46:1089–1099. 2010.PubMed/NCBI View Article : Google Scholar | |
He LH, Liu M, He Y, Xiao E, Zhao L, Zhang T, Yang HQ and Zhang Y: TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation. Sci Rep. 7(42385)2017.PubMed/NCBI View Article : Google Scholar | |
Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K and Wang JC: The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 7:50–60. 2007.PubMed/NCBI View Article : Google Scholar | |
Li C, Zhang X, Zheng Z, Nguyen A, Ting K and Soo C: Nell-1 is a key functional modulator in osteochondrogenesis and beyond. J Dent Res. 98:1458–1468. 2019.PubMed/NCBI View Article : Google Scholar | |
Xu R, Zhang C, Shin DY, Kim JM, Lalani S, Li N, Yang YS, Liu Y, Eiseman M, Davis RJ, et al: c-Jun N-terminal kinases (JNKs) are critical mediators of osteoblast activity in vivo. J Bone Miner Res. 32:1811–1815. 2017.PubMed/NCBI View Article : Google Scholar | |
Ke D, Ji L, Wang Y, Fu X, Chen J, Wang F, Zhao D, Xue Y, Lan X and Hou J: JNK1 regulates RANKL-induced osteoclastogenesis via activation of a novel Bcl-2-Beclin1-autophagy pathway. FASEB J. 33:11082–11095. 2019.PubMed/NCBI View Article : Google Scholar | |
Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, et al: The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One. 3(e3642)2008.PubMed/NCBI View Article : Google Scholar | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar | |
Moore BT and Xiao P: MiRNAs in bone diseases. Microrna. 2:20–31. 2013.PubMed/NCBI View Article : Google Scholar | |
Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, et al: Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res. 28:559–573. 2013.PubMed/NCBI View Article : Google Scholar | |
Li H, Xie H, Liu W, Hu R, Huang H, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP and Luo XH: A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 119:3666–3677. 2009.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, Wijnen AJ and Stein GS: A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA. 108:9863–9868. 2011.PubMed/NCBI View Article : Google Scholar | |
Luo Y, Cao X, Chen J, Gu J, Zhao J and Sun J: MicroRNA-224 suppresses osteoblast differentiation by inhibiting SMAD4. J Cell Physiol. 233:6929–6937. 2018.PubMed/NCBI View Article : Google Scholar | |
Ghosh AK, Bradham WS, Gleaves LA, De Taeye B, Murphy SB, Covington JW and Vaughan DE: Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: Involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition. Circulation. 122:1200–1209. 2010.PubMed/NCBI View Article : Google Scholar | |
Mao L, Kawao N, Tamura Y, Okumoto K, Okada K, Yano M, Matsuo O and Kaji H: Plasminogen activator inhibitor-1 is involved in impaired bone repair associated with diabetes in female mice. PLoS One. 9(e92686)2014.PubMed/NCBI View Article : Google Scholar | |
Ghali N, Sobey G and Burrows N: Ehlers-Danlos syndromes. BMJ. 366(l4966)2019.PubMed/NCBI View Article : Google Scholar | |
Nuytinck L, Freund M, Lagae L, Pierard GE, Hermanns-Le T and De Paepe A: Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Am J Hum Genet. 66:1398–1402. 2000.PubMed/NCBI View Article : Google Scholar |