Identification and validation of autophagy‑related genes in hypertrophic cardiomyopathy
- Authors:
- Rong-Bin Qiu
- Shi-Tao Zhao
- Zhi-Wei Li
- Rui-Yuan Zeng
- Zhi-Cong Qiu
- Han-Zhi Peng
- Zhi-Qiang Xu
- Lian-Fen Zhou
- Song-Qing Lai
- Li Wan
-
Affiliations: Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Cardiothoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu 215028, P.R. China - Published online on: September 25, 2024 https://doi.org/10.3892/etm.2024.12729
- Article Number: 440
-
Copyright: © Qiu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
He J, Gu D, Wu X, Reynolds K, Duan X, Yao C, Wang J, Chen CS, Chen J, Wildman RP, et al: Major causes of death among men and women in China. N Engl J Med. 353:1124–1134. 2005.PubMed/NCBI View Article : Google Scholar | |
Abbas MT, Baba Ali N, Farina JM, Mahmoud AK, Pereyra M, Scalia IG, Kamel MA, Barry T, Lester SJ, Cannan CR, et al: Role of genetics in diagnosis and management of hypertrophic cardiomyopathy: A glimpse into the future. Biomedicines. 12(682)2024.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Xia Q, Su W, Cao M, Sun Y, Zhang M, Chen W and Jiang T: Exploring the communal pathogenesis, ferroptosis mechanism, and potential therapeutic targets of dilated cardiomyopathy and hypertrophic cardiomyopathy via a microarray data analysis. Front Cardiovasc Med. 9(824756)2022.PubMed/NCBI View Article : Google Scholar | |
Chase Cole J, Benvie SF and DeLosSantos M: Mavacamten: A novel agent for hypertrophic cardiomyopathy. Clin Ther. 46:368–373. 2024.PubMed/NCBI View Article : Google Scholar | |
Zampieri M, Argirò A, Marchi A, Berteotti M, Targetti M, Fornaro A, Tomberli A, Stefàno P, Marchionni N and Olivotto I: Mavacamten, a novel therapeutic strategy for obstructive hypertrophic cardiomyopathy. Curr Cardiol Rep. 23(79)2021.PubMed/NCBI View Article : Google Scholar | |
Ottaviani A, Mansour D, Molinari LV, Galanti K, Mantini C, Khanji MY, Chahal AA, Zimarino M, Renda G, Sciarra L, et al: Revisiting diagnosis and treatment of hypertrophic cardiomyopathy: Current practice and novel perspectives. J Clin Med. 12(5710)2023.PubMed/NCBI View Article : Google Scholar | |
Bakalakos A, Monda E and Elliott PM: The diagnostic and therapeutic implications of phenocopies and mimics of hypertrophic cardiomyopathy. Can J Cardiol. 40:754–765. 2024.PubMed/NCBI View Article : Google Scholar | |
Pu L, Li J, Qi W, Zhang J, Chen H, Tang Z, Han Y, Wang J and Chen Y: Current perspectives of sudden cardiac death management in hypertrophic cardiomyopathy. Heart Fail Rev. 29:395–404. 2024.PubMed/NCBI View Article : Google Scholar | |
Faisaluddin M, Balasubramanian S, Ahmed A, Hussain K, Nso N, Gaznabi S, Erwin JP III, Pursnani A and Ricciardi M: Temporal trends and procedural safety of transcatheter mitral valve repair with mitraclip in patients with hypertrophic cardiomyopathy: Insights from the national inpatient sample. Curr Probl Cardiol. 49(102354)2024.PubMed/NCBI View Article : Google Scholar | |
Yacoub MS, El-Nakhal T, Hasabo EA, Shehata N, Wilson K, Ismail KH, Bakr MS, Mohsen M, Mohamed A, Abdelazim E, et al: A systematic review and meta-analysis of the efficacy and safety of Mavacamten therapy in international cohort of 524 patients with hypertrophic cardiomyopathy. Heart Fail Rev. 29:479–496. 2024.PubMed/NCBI View Article : Google Scholar | |
Chen X, Tsvetkov AS, Shen HM, Isidoro C, Ktistakis NT, Linkermann A, Koopman WJH, Simon HU, Galluzzi L, Luo S, et al: International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy. 24:1213–1246. 2024.PubMed/NCBI View Article : Google Scholar | |
Kaplan JL, Rivas VN and Connolly DJ: Advancing treatments for feline hypertrophic cardiomyopathy: The role of animal models and targeted therapeutics. Vet Clin North Am Small Anim Pract. 53:1293–1308. 2023.PubMed/NCBI View Article : Google Scholar | |
Rivas VN, Kaplan JL, Kennedy SA, Fitzgerald S, Crofton AE, Farrell A, Grubb L, Jauregui CE, Grigorean G, Choi E, et al: Multi-omic, histopathologic, and clinicopathologic effects of once-weekly oral rapamycin in a naturally occurring feline model of hypertrophic cardiomyopathy: A pilot study. Animals (Basel). 13(3184)2023.PubMed/NCBI View Article : Google Scholar | |
Dang JY, Zhang W, Chu Y, Chen JH, Ji ZL and Feng P: Downregulation of salusins alleviates hypertrophic cardiomyopathy via attenuating oxidative stress and autophagy. Eur J Med Res. 29(109)2024.PubMed/NCBI View Article : Google Scholar | |
Huang X, Zhang J, Wang W, Huang Z and Han P: Vps4a regulates autophagic flux to prevent hypertrophic cardiomyopathy. Int J Mol Sci. 24(10800)2023.PubMed/NCBI View Article : Google Scholar | |
Rabinovich-Nikitin I and Kirshenbaum LA: YAP/TFEB pathway promotes autophagic cell death and hypertrophic cardiomyopathy in lysosomal storage diseases. J Clin Invest. 131(e146821)2021.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Zhao J, Jin Q and Zhuang L: Transcriptomic analyses and experimental validation identified immune-related lncRNA-mRNA Pair MIR210HG-BPIFC regulating the progression of hypertrophic cardiomyopathy. Int J Mol Sci. 25(2816)2024.PubMed/NCBI View Article : Google Scholar | |
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(e47)2015.PubMed/NCBI View Article : Google Scholar | |
R Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 2020. Available from: https://www.R-project.org/. | |
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and Lin CY: cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 8 (Suppl 4)(S11)2014.PubMed/NCBI View Article : Google Scholar | |
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2(100141)2021.PubMed/NCBI View Article : Google Scholar | |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003.PubMed/NCBI View Article : Google Scholar | |
Gong J, Shi B, Yang P, Khan A, Xiong T and Li Z: Unveiling immune infiltration characterizing genes in hypertrophic cardiomyopathy through transcriptomics and bioinformatics. J Inflamm Res. 17:3079–3092. 2024.PubMed/NCBI View Article : Google Scholar | |
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D and Tang Q: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. 160:303–318. 2020.PubMed/NCBI View Article : Google Scholar | |
Livak KJ and Schmittgen TD: Analysis of relative gene expres-sion data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar | |
Gao XM, Wong G, Wang B, Kiriazis H, Moore XL, Su YD, Dart A and Du XJ: Inhibition of mTOR reduces chronic pressure-overload cardiac hypertrophy and fibrosis. J Hypertens. 24:1663–1670. 2006.PubMed/NCBI View Article : Google Scholar | |
Völkers M, Konstandin MH, Doroudgar S, Toko H, Quijada P, Din S, Joyo A, Ornelas L, Samse K, Thuerauf DJ, et al: Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation. 128:2132–2144. 2013.PubMed/NCBI View Article : Google Scholar | |
Pei HF, Hou JN, Wei FP, Xue Q, Zhang F, Peng CF, Yang Y, Tian Y, Feng J, Du J, et al: Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression. J Pineal Res. 62:2017.PubMed/NCBI View Article : Google Scholar | |
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M and Qin L: Melatonin as an antioxidant: Under promises but over delivers. J Pineal Res. 61:253–278. 2016.PubMed/NCBI View Article : Google Scholar | |
Dai H, Liu Y, Zhu M, Tao S, Hu C, Luo P, Jiang A and Zhang G: Machine learning and experimental validation of novel biomarkers for hypertrophic cardiomyopathy and cancers. J Cell Mol Med. 28(e70034)2024.PubMed/NCBI View Article : Google Scholar | |
Abbasi M, Ong KC, Newman DB, Dearani JA, Schaff HV and Geske JB: Obstruction in hypertrophic cardiomyopathy: Many faces. J Am Soc Echocardiogr. 37:613–625. 2024.PubMed/NCBI View Article : Google Scholar | |
McKinney J, Isserow M, Wong J, Isserow S and Moulson N: New insights and recommendations for athletes with hypertrophic cardiomyopathy. Can J Cardiol. 40:921–933. 2024.PubMed/NCBI View Article : Google Scholar | |
Schaff HV and Wei X: Contemporary surgical management of hypertrophic cardiomyopathy. Ann Thorac Surg. 117:271–281. 2024.PubMed/NCBI View Article : Google Scholar | |
Maron BJ, Rowin EJ and Maron MS: Global burden of hypertrophic cardiomyopathy. JACC Heart Fail. 6:376–378. 2018.PubMed/NCBI View Article : Google Scholar | |
Ding X, Zhu C, Wang W, Li M, Ma C and Gao B: SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res. 199(106957)2024.PubMed/NCBI View Article : Google Scholar | |
Rabinovich-Nikitin I, Kirshenbaum E and Kirshenbaum LA: Autophagy, clock genes, and cardiovascular disease. Can J Cardiol. 39:1772–1780. 2023.PubMed/NCBI View Article : Google Scholar | |
Zhao J, Liu GW and Tao C: Hotspots and future trends of autophagy in traditional chinese medicine: A bibliometric analysis. Heliyon. 9(e20142)2023.PubMed/NCBI View Article : Google Scholar | |
Sazonova EV, Petrichuk SV, Kopeina GS and Zhivotovsky B: A link between mitotic defects and mitotic catastrophe: Detection and cell fate. Biol Direct. 16(25)2021.PubMed/NCBI View Article : Google Scholar | |
Byrnes K, Blessinger S, Bailey NT, Scaife R, Liu G and Khambu B: Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B. 12:33–49. 2022.PubMed/NCBI View Article : Google Scholar | |
Xiong R, Li N, Chen L, Wang W, Wang B, Jiang W and Geng Q: STING protects against cardiac dysfunction and remodelling by blocking autophagy. Cell Commun Signal. 19(109)2021.PubMed/NCBI View Article : Google Scholar | |
Ikeda S, Zablocki D and Sadoshima J: The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol. 165:1–8. 2022.PubMed/NCBI View Article : Google Scholar | |
Chen B, Yang Y, Wu J, Song J and Lu J: microRNA-17-5p downregulation inhibits autophagy and myocardial remodelling after myocardial infarction by targeting STAT3. Autoimmunity. 55:43–51. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhu QH, Zhou YL, Yang M, Yang BB, Cao WT, Yuan LM and Deng DQ: Reduced miR-99a-3p levels in systemic lupus erythematosus may promote B cell proliferation via NCAPG and the PI3K/AKT signaling pathway. Lupus. 33:365–374. 2024.PubMed/NCBI View Article : Google Scholar | |
Voeltzke K, Scharov K, Funk CM, Kahler A, Picard D, Hauffe L, Orth MF, Remke M, Esposito I, Kirchner T, et al: EIF4EBP1 is transcriptionally upregulated by MYCN and associates with poor prognosis in neuroblastoma. Cell Death Discov. 8(157)2022.PubMed/NCBI View Article : Google Scholar | |
Wu ZR, Yan L, Liu YT, Cao L, Guo YH, Zhang Y, Yao H, Cai L, Shang HB, Rui WW, et al: Inhibition of mTORC1 by lncRNA H19 via disrupting 4E-BP1/Raptor interaction in pituitary tumours. Nat Commun. 9(4624)2018.PubMed/NCBI View Article : Google Scholar | |
Nelson ED, Benesch MG, Wu R, Ishikawa T and Takabe K: High EIF4EBP1 expression reflects mTOR pathway activity and cancer cell proliferation and is a biomarker for poor breast cancer prognosis. Am J Cancer Res. 14:227–242. 2024.PubMed/NCBI View Article : Google Scholar | |
Montalban-Bravo G, Thongon N, Rodriguez-Sevilla JJ, Ma F, Ganan-Gomez I, Yang H, Kim YJ, Adema V, Wildeman B, Tanaka T, et al: Targeting MCL1-driven anti-apoptotic pathways overcomes blast progression after hypomethylating agent failure in chronic myelomonocytic leukemia. Cell Rep Med. 5(101585)2024.PubMed/NCBI View Article : Google Scholar | |
Mukherjee N, Katsnelson E, Brunetti TM, Michel K, Couts KL, Lambert KA, Robinson WA, McCarter MD, Norris DA, Tobin RP and Shellman YG: MCL1 inhibition targets myeloid derived suppressors cells, promotes antitumor immunity and enhances the efficacy of immune checkpoint blockade. Cell Death Dis. 15(198)2024.PubMed/NCBI View Article : Google Scholar | |
Clerbaux LA, Cordier P, Desboeufs N, Unger K, Leary P, Semere G, Boege Y, Chan LK, Desdouets C, Lopes M and Weber A: Mcl-1 deficiency in murine livers leads to nuclear polyploidisation and mitotic errors: Implications for hepatocellular carcinoma. JHEP Rep. 5(100838)2023.PubMed/NCBI View Article : Google Scholar | |
Chiou JT and Chang LS: Synergistic cytotoxicity of decitabine and YM155 in leukemia cells through upregulation of SLC35F2 and suppression of MCL1 and survivin expression. Apoptosis. 29:503–520. 2024.PubMed/NCBI View Article : Google Scholar | |
Boët E and Sarry JE: Targeting metabolic dependencies fueling the TCA cycle to circumvent therapy resistance in acute myeloid leukemia. Cancer Res. 84:950–952. 2024.PubMed/NCBI View Article : Google Scholar | |
Mukherjee N, Schwan JV, Fujita M, Norris DA and Shellman YG: Alternative treatments for melanoma: Targeting BCL-2 family members to de-bulk and kill cancer stem cells. J Invest Dermatol. 135:2155–2161. 2015.PubMed/NCBI View Article : Google Scholar | |
Kapoor I, Bodo J, Hill BT, Hsi ED and Almasan A: Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis. 11(941)2020.PubMed/NCBI View Article : Google Scholar | |
Neophytou CM, Trougakos IP, Erin N and Papageorgis P: Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers (Basel). 13(4363)2021.PubMed/NCBI View Article : Google Scholar | |
Zhan H, Huang F, Niu Q, Jiao M, Han X, Zhang K, Ma W, Mi S, Guo S and Zhao Z: Downregulation of miR-128 ameliorates Ang II-induced cardiac remodeling via SIRT1/PIK3R1 multiple targets. Oxid Med Cell Longev. 2021(8889195)2021.PubMed/NCBI View Article : Google Scholar | |
Dsouza NR, Cottrell CE, Davies OMT, Tollefson MM, Frieden IJ, Basel D, Urrutia R, Drolet BA and Zimmermann MT: Structural and dynamic analyses of pathogenic variants in PIK3R1 reveal a shared mechanism associated among cancer, undergrowth, and overgrowth syndromes. Life (Basel). 14(297)2024.PubMed/NCBI View Article : Google Scholar | |
De Bortoli M, Queisser A, Pham VC, Dompmartin A, Helaers R, Boutry S, Claus C, De Roo AK, Hammer F, Brouillard P, et al: Somatic loss-of-function PIK3R1 and activating non-hotspot PIK3CA mutations associated with capillary malformation with dilated veins (CMDV). J Invest Dermatol. 144:2066–2077. 2024.PubMed/NCBI View Article : Google Scholar | |
Yu X, Xu C, Zou Y, Liu W, Xie Y and Wu C: A prognostic metabolism-related gene signature associated with the tumor immune microenvironment in neuroblastoma. Am J Cancer Res. 14:253–273. 2024.PubMed/NCBI View Article : Google Scholar | |
He B, Quan L, Li C, Yan W, Zhang Z, Zhou L, Wei Q, Li Z, Mo J, Zhang Z, et al: Targeting ERBB2 and PIK3R1 as a therapeutic strategy for dilated cardiomyopathy: A single-cell sequencing and mendelian randomization analysis. Heliyon. 10(e25572)2024.PubMed/NCBI View Article : Google Scholar | |
Maura F and Bergsagel PL: Molecular pathogenesis of multiple myeloma: Clinical implications. Hematol Oncol Clin North Am. 38:267–279. 2024.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Wang K, Jiang C, Chen Y, Liu F, Xie M, Yim WY, Yao D, Qian X, Chen S, et al: Morusin alleviates aortic valve calcification by inhibiting valve interstitial cell senescence through Ccnd1/Trim25/Nrf2 axis. Adv Sci (Weinh). 19(e2307319)2024.PubMed/NCBI View Article : Google Scholar | |
Zhang W and Hong W: Upregulation of miR-519d-3p inhibits viability, proliferation, and G1/S cell cycle transition of oral squamous cell carcinoma cells through targeting CCND1. Cancer Biother Radiopharm. 39:153–163. 2024.PubMed/NCBI View Article : Google Scholar | |
Quesada AE, Hu S, Li S, Toruner GA, Wei Q, Loghavi S, Ok CY, Jain P, Thakral B, Nwogbo OV, et al: Optical genomic mapping is a helpful tool for detecting CCND1 rearrangements in CD5-negative small B-cell lymphoma: Two cases of leukemic non-nodal mantle cell lymphoma. Hum Pathol. 144:71–76. 2024.PubMed/NCBI View Article : Google Scholar | |
Han B, Chen J, Chen S, Shen X, Hou L, Fang J and Lian M: PPARG and the PTEN-PI3K/AKT signaling axis may cofunction in promoting chemosensitivity in hypopharyngeal squamous cell carcinoma. PPAR Res. 2024(2271214)2024.PubMed/NCBI View Article : Google Scholar | |
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W and Zhang X: Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett. 570(216307)2023.PubMed/NCBI View Article : Google Scholar | |
Jia Q, Li B, Wang X, Ma Y and Li G: Comprehensive analysis of peroxisome proliferator-activated receptors to predict the drug resistance, immune microenvironment, and prognosis in stomach adenocarcinomas. PeerJ. 12(e17082)2024.PubMed/NCBI View Article : Google Scholar | |
Sun Y, Ma J, Lin J, Sun D, Song P, Shi L, Li H, Wang R, Wang Z and Liu S: Circular RNA circ_ASAP2 regulates drug sensitivity and functional behaviors of cisplatin-resistant gastric cancer cells by the miR-330-3p/NT5E axis. Anticancer Drugs. 32:950–961. 2021.PubMed/NCBI View Article : Google Scholar | |
Choi JC, Muchir A, Wu W, Iwata S, Homma S, Morrow JP and Worman HJ: Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci Transl Med. 4(144ra102)2012.PubMed/NCBI View Article : Google Scholar | |
Gan T, Qu S, Zhang H and Zhou XJ: Modulation of the immunity and inflammation by autophagy. MedComm (2020). 4(e311)2023.PubMed/NCBI View Article : Google Scholar | |
Herb M, Gluschko A and Schramm M: LC3-associated phagocytosis-the highway to hell for phagocytosed microbes. Semin Cell Dev Biol. 101:68–76. 2020.PubMed/NCBI View Article : Google Scholar | |
Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, Delgado-Vargas M, Timmins GS, Bhattacharya D, Yang H, et al: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci USA. 109:E3168–E3176. 2012.PubMed/NCBI View Article : Google Scholar | |
Ma CS: Human T follicular helper cells in primary immunodeficiency: Quality just as important as quantity. J Clin Immunol. 36 (Suppl 1):S40–S47. 2016.PubMed/NCBI View Article : Google Scholar | |
Singh SR, Zech ATL, Geertz B, Reischmann-Düsener S, Osinska H, Prondzynski M, Krämer E, Meng Q, Redwood C, van der Velden J, et al: Activation of autophagy ameliorates cardiomyopathy in mybpc3-targeted knockin mice. Circ Heart Fail. 10(e004140)2017.PubMed/NCBI View Article : Google Scholar | |
Hassoun R, Budde H, Zhazykbayeva S, Herwig M, Sieme M, Delalat S, Mostafi N, Gömöri K, Tangos M, Jarkas M, et al: Stress activated signalling impaired protein quality control pathways in human hypertrophic cardiomyopathy. Int J Cardiol. 344:160–169. 2021.PubMed/NCBI View Article : Google Scholar | |
Simpson JE and Gammoh N: Autophagy cooperates with PDGFRA to support oncogenic growth signaling. Autophagy. 20:1901–1902. 2024.PubMed/NCBI View Article : Google Scholar | |
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of Mammalian autophagy in physiology and pathophysiology. Physiol Rev. 90:1383–1435. 2010.PubMed/NCBI View Article : Google Scholar | |
Marian AJ and Braunwald E: Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 121:749–770. 2017.PubMed/NCBI View Article : Google Scholar | |
Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ, Nguyen L, Gerard RD, Levine B, Rothermel BA and Hill JA: Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci USA. 105:9745–9750. 2008.PubMed/NCBI View Article : Google Scholar | |
Sheng SY, Li JM, Hu XY and Wang Y: Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin. 44:1521–1535. 2023.PubMed/NCBI View Article : Google Scholar | |
Buss SJ, Muenz S, Riffel JH, Malekar P, Hagenmueller M, Weiss CS, Bea F, Bekeredjian R, Schinke-Braun M, Izumo S, et al: Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol. 54:2435–2446. 2009.PubMed/NCBI View Article : Google Scholar | |
Sciarretta S, Volpe M and Sadoshima J: Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res. 114:549–564. 2014.PubMed/NCBI View Article : Google Scholar | |
Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol J, Wang B, Bauer M, et al: Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest. 121:1026–1043. 2011.PubMed/NCBI View Article : Google Scholar | |
Sciarretta S, Forte M, Frati G and Sadoshima J: New insights into the role of mTOR signaling in the cardiovascular system. Circ Res. 122:489–505. 2018.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Du J, Xu R, Shen Y, Yang D, Li D, Hu H, Pei H and Yang Y: Melatonin alleviates angiotensin-II-induced cardiac hypertrophy via activating MICU1 pathway. Aging (Albany NY). 13:493–515. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen S, Sun P, Li Y, Shen W, Wang C, Zhao P, Cui H, Xue JY and Du GQ: Melatonin activates the Mst1-Nrf2 signaling to alleviate cardiac hypertrophy in pulmonary arterial hypertension. Eur J Pharmacol. 933(175262)2022.PubMed/NCBI View Article : Google Scholar |