1.
|
Lee YC and Light RW: Management of
malignant pleural effusions. Respirology. 9:148–156. 2004.
View Article : Google Scholar : PubMed/NCBI
|
2.
|
Antony VE, Loddenkepmper R, Astoul P, et
al: Management of malignant pleural effusions. Am J Resp Crit Care
Med. 162:1987–2001. 2000. View Article : Google Scholar
|
3.
|
West SD, Davies RJ and Lee YC: Pleurodesis
for malignant pleural effusions: current controversies and
variations in practices. Curr Opin Pulm Med. 10:305–310. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4.
|
Kinasewitz GT: Transudative effusions. Eur
Respir J. 10:714–718. 1997.PubMed/NCBI
|
5.
|
Light RW: Pleural diseases. Dis Mon.
38:261–331. 1992. View Article : Google Scholar
|
6.
|
Yanagama H, Takeuchi E, Suzuki Y, et al:
Vascular endothelial growth factor in malignant pleural effusion
associated with lung cancer. Cancer Immunol Immunother. 48:396–400.
1999. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Lee YCG and Lane KB: Cytokines in pleural
diseases. Textbook of Pleural Disease. Light RW and Lee YCG:
Arnold; London: pp. 63–89. 2003
|
8.
|
Light RW: Talc for pleurodesis? Chest.
122:1506–1508. 2002. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Yano S, Shinohara H, Herbst RS, et al:
Production of experimental malignant pleural effusions is dependent
on invasion of the pleura and expression of vascular endothelial
growth factor/vascular permeability factor by human lung cancer
cells. Am J Pathol. 157:1893–1903. 2000. View Article : Google Scholar
|
10.
|
Stathopoulos GT, Zhu Z, Everhart MB, et
al: Nuclear factor-kappaB affects tumor progression in a mouse
model of malignant pleural effusion. Am J Respir Cell Mol Biol.
34:142–150. 2006. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Stathopoulos GT, Kollintza A, Moschos C,
et al: Tumor necrosis factor-alpha promotes malignant pleural
effusion. Cancer Res. 67:9825–9834. 2007. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Stathopoulos GT, Psallidas I, Moustaki A,
et al: Tumor-derived monocyte chemoattractant protein-1 promotes
malignant pleural effusion. J Natl Cancer Inst. 100:1464–1476.
2008. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Antony VB: Immunological mechanisms in
pleural disease. Eur Respir J. 21:539–544. 2003. View Article : Google Scholar : PubMed/NCBI
|
14.
|
McDonald DM: Angiogenesis and remodeling
of airway vasculature in chronic inflammation. Am J Respir Crit
Care Med. 164:S39–S45. 2001. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Hoshino M, Takahashi M and Aoike N:
Expression of vascular endothelial growth factor, basic fibroblast
growth factor and angiogenin immunoreactivity in asthmatic airways
and its relationship to angiogenesis. J Allergy Clin Immunol.
107:295–301. 2001. View Article : Google Scholar
|
16.
|
Hoshino M, Nakamura Y and Hamid QA: Gene
expression of vascular endothelial growth factor and its receptors
and angiogenesis in bronchial asthma. J Allergy Clin Immunol.
107:1034–1038. 2000. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Sack U, Hoffmann M, Zhao XJ, et al:
Vascular endothelial growth factor in pleural effusions of
different origin. Eur Respir J. 25:600–604. 2005. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Ruiz E, Alemán C, Alegre J, et al:
Angiogenic factors and angiogenesis inhibitors in exudative pleural
effusions. Lung. 183:185–195. 2005. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Ferrara N and Davis-Smyth T: The biology
of vascular endothelial growth factor. Endocr Rev. 18:4–25. 1997.
View Article : Google Scholar
|
20.
|
Cheng D, Rodriguez RM, Perkett EA, et al:
Vascular endothelial growth factor in pleural fluid. Chest.
116:760–765. 1999. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Grove CS and Lee YC: Vascular endothelial
growth factor: the key mediator in pleural effusion formation. Curr
Opin Pulm Med. 8:294–301. 2002. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Yancopoulos GD, Davis S, Gale NW, et al:
Vascular-specific growth factors and blood vessel formation.
Nature. 407:242–248. 2000. View
Article : Google Scholar : PubMed/NCBI
|
23.
|
Ferrara N, Carver-Moore K, Chen H, et al:
Heterozygous embryonic lethality induced by targeted inactivation
of the VEGF gene. Nature. 380:439–442. 1996. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Cheng D, Lee YC, Rogers JT, et al:
Vascular endothelial growth factor level correlates with
transforming growth factor-beta isoform levels in pleural
effusions. Chest. 118:1747–1753. 2000. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Hamed EA, El-Noweihi AM, Mohamed AZ and
Mahmoud A: Vasoactive mediators (VEGF and TNF-alpha) in patients
with malignant and tuberculous pleural effusions. Respirology.
9:81–86. 2004. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Momi H, Matsuyama W, Inoue K, et al:
Vascular endothelial growth factor and proinflammatory cytokines in
pleural effusions. Respir Med. 96:817–822. 2002. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Kalomenidis I, Kollintza A, Sigala I, et
al: Angiopoietin-2 levels are elevated in exudative pleural
effusions. Chest. 129:1259–1266. 2006. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Economidou F, Antoniou KM, Tzanakis N, et
al: Angiogenic molecule Tie-2 and VEGF in the pathogenesis of
pleural effusions. Respir Med. 102:774–779. 2008. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Duysinx BC, Corhay JL, Hubin L, et al:
Diagnostic value of interleukin-6, transforming growth factor-beta
1 and vascular endothelial growth factor in malignant pleural
effusions. Respir Med. 102:1708–1714. 2008. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Carlomagno F, Vitagliano D, Guida T, et
al: ZD6474, an orally available inhibitor of KDR tyrosine kinase
activity, efficiently blocks oncogenic RET kinases. Cancer Res.
62:7284–7290. 2002.PubMed/NCBI
|
31.
|
Ciardiello F, Bianco R, Caputo R, et al:
Antitumor activity of ZD6474, a vascular endothelial growth factor
receptor tyrosine kinase inhibitor, in human cancer cells with
acquired resistance to antiepidermal growth factor receptor
therapy. Clin Cancer Res. 10:784–793. 2004. View Article : Google Scholar
|
32.
|
Frederick B, Gustafson D, Bianco C, et al:
ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in
combination with radiotherapy. Int J Radiat Oncol Biol Phys.
64:33–37. 2006. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Hennequin LF, Stokes ES, Thomas AP, et al:
Novel 4-anilino-quinazolines with C-7 basic side chains: design and
structure activity relationship of a series of potent, orally
active, VEGF receptor tyrosine kinase inhibitors. J Med Chem.
45:1300–1312. 2002. View Article : Google Scholar
|
34.
|
Wedge SR, Ogilvie DJ, Dukes M, et al:
ZD6474 inhibits vascular endothelial growth factor signaling,
angiogenesis and tumor growth following oral administration. Cancer
Res. 62:4645–4655. 2002.PubMed/NCBI
|
35.
|
Williams KJ, Telfer BA, Brave S, et al:
ZD6474, a potent inhibitor of vascular endothelial growth factor
signaling, combined with radiotherapy: schedule-dependent
enhancement of antitumor activity. Clin Cancer Res. 10:8587–8593.
2004. View Article : Google Scholar
|
36.
|
Matsumori Y, Yano S, Goto H, et al:
ZD6474, an inhibitor of vascular endothelial growth factor receptor
tyrosine kinase, inhibits growth of experimental lung metastasis
and production of malignant pleural effusions in a non-small cell
lung cancer model. Oncol Res. 16:15–26. 2006.
|
37.
|
Shibuya K, Komaki R, Shintani T, et al:
Targeted therapy against VEGFR and EGFR with ZD6474 enhances the
therapeutic efficacy of irradiation in an orthotopic model of human
non-small cell lung cancer. Int J Radiat Oncol Biol Phys.
69:1534–1543. 2007. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Yano S, Herbst RS, Shinohara H, et al:
Treatment for malignant pleural effusion of human lung
adenocarcinoma by inhibition of vascular endothelial growth factor
receptor tyrosine kinase phosphorylation. Clin Cancer Res.
6:957–965. 2000.PubMed/NCBI
|
39.
|
Wood JM, Bold G, Buchdunger E, et al: PTK
787/ZK 222584, a novel and potent inhibitor of vascular endothelial
growth factor receptor tyrosine kinases, impairs vascular
endothelial growth factor-induced responses and tumor growth after
oral administration. Cancer Res. 60:2178–2189. 2000.
|
40.
|
Li Q, Yano S, Ogino H, et al: The
therapeutic efficacy of anti-vascular endothelial growth factor
antibody, bevacizumab and pemetrexed against orthotopically
implanted human pleural mesothelioma cells in severe combined
immunodeficient mice. Clin Cancer Res. 13:5918–5925. 2007.
View Article : Google Scholar
|
41.
|
Thirkettle I, Harvey P, Hasleton PS, et
al: Immunoreactivity for cadherins, HGF/SF, met and erbB-2 in
pleural malignant mesotheliomas. Histopathology. 36:522–528. 2000.
View Article : Google Scholar : PubMed/NCBI
|
42.
|
Strizzi L, Catalano A, Vianale G, et al:
Vascular endothelial growth factor is an autocrine growth factor in
human malignant mesothelioma. Am J Pathol. 193:468–475. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43.
|
Dazzi H, Hasleton PS, Thatcher N, et al:
Malignant pleural mesothelioma and epidermal growth factor receptor
(EGF-R). Relationship of EGF-R with histology and survival using
fixed paraffin embedded tissue and the F4 monoclonal antibody. Br J
Cancer. 61:924–926. 1990. View Article : Google Scholar
|
44.
|
Thaker PH, Deavers M, Celestino J, et al:
EphA2 expression is associated with aggressive features in ovarian
carcinoma. Clin Cancer Res. 10:5145–5150. 2004. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Kinch MS, Moore MB and Harpole DH Jr:
Predictive value of the EphA2 receptor tyrosine kinase in lung
cancer recurrence and survival. Clin Cancer Res. 9:613–618.
2003.PubMed/NCBI
|
46.
|
Easty DJ, Herlyn M and Bennett DC:
Abnormal protein tyrosine kinase gene expression during melanoma
progression and metastasis. Int J Cancer. 60:129–136. 1995.
View Article : Google Scholar : PubMed/NCBI
|
47.
|
Xu F, Zhong W, Li J, et al: Predictive
value of EphA2 and EphrinA-1 expression in oesophageal squamous
cell carcinoma. Anticancer Res. 25:2943–2950. 2005.PubMed/NCBI
|
48.
|
Nasreen N, Mohammed KA and Antony VB:
Silencing the receptor EphA2 suppresses the growth and haptotaxis
of malignant mesothelioma cells. Cancer. 107:2425–2435. 2006.
View Article : Google Scholar : PubMed/NCBI
|
49.
|
Nasreen N, Mohammed KA, Lai Y and Antony
VB: Receptor EphA2 activation with ephrin A1 suppresses growth of
malignant mesothelioma (mm). Cancer Lett. 258:215–222. 2007.
View Article : Google Scholar : PubMed/NCBI
|
50.
|
O’Reilly MS, Boehm T, Shing Y, et al:
Endostatin: an endogenous inhibitor of angiogenesis and tumor
growth. Cell. 88:277–285. 1997.
|
51.
|
Nasreen N, Mohammed KA, Sanders K, et al:
Pleural mesothelial cell (PMC) defense mechanisms against
malignancy. Oncol Res. 14:155–161. 2003.PubMed/NCBI
|
52.
|
Nasreen N, Mohammed KA, Brown S, et al:
Talc mediates angiostasis in malignant pleural effusions via
endostatin induction. Eur Respir J. 29:761–769. 2007. View Article : Google Scholar : PubMed/NCBI
|
53.
|
Bourguignon LY, Lokeshwar VB, Chen X and
Kerrick WG: Hyaluronic acid-induced lymphocyte signal transduction
and HA receptor (GP85/CD44)-cytoskeleton interaction. J Immunol.
151:6634–6644. 1993.PubMed/NCBI
|
54.
|
Nasreen N, Mohammed KA, Hardwick J, et al:
Low molecular weight hyaluronan induces malignant mesothelioma cell
(MMC) proliferation and haptotaxis: role of CD44 receptor in MMC
proliferation and haptotaxis. Oncol Res. 13:71–78. 2002.PubMed/NCBI
|
55.
|
Tsigos S, Koutsilieris M and
Papapetropoulos A: Angiopoietins in angiogenesis and beyond. Expert
Opin Investig Drugs. 12:933–941. 2003. View Article : Google Scholar : PubMed/NCBI
|
56.
|
Thurston G, Rudge JS, Ioffe E, et al:
Angiopoietin-1 protects the adult vasculature against plasma
leakage. Nat Med. 6:460–463. 2006. View
Article : Google Scholar : PubMed/NCBI
|
57.
|
Thurston G, Suri C, Smith K, et al:
Leakage-resistant blood vessels in mice trangenically
overexpressing angiopoietin-1. Science. 286:2511–2514. 1999.
View Article : Google Scholar : PubMed/NCBI
|
58.
|
Kim I, Moon SO, Park SK, et al:
Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to
endothelial cells by reducing ICAM-1, VCAM-1 and E-selectin
expression. Circ Res. 89:477–479. 2001. View Article : Google Scholar : PubMed/NCBI
|
59.
|
Gamble JR, Drew J, Trezise L, et al:
Angiopoietin-1 is an anti-permeability and anti-inflammatory agent
in vitro and targets cell junctions. Cir Res. 87:603–607. 2000.
View Article : Google Scholar : PubMed/NCBI
|
60.
|
Pizurki L, Zhou Z, Glynos K, et al:
Angiopoietin-1 inhibits endothelial permeability, neutrophil
adherence and IL-8 production. J Pharmacol. 139:329–336.
2003.PubMed/NCBI
|
61.
|
Maisonpierre PC, Suri C, Jones PF, et al:
Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo
angiogenesis. Science. 277:55–60. 1997. View Article : Google Scholar : PubMed/NCBI
|
62.
|
Scharpfenecker M, Fiedler U, Reiss Y and
Augustin HG: The Tie-2 ligand angiopoietin-2 destabilizes quiescent
endothelium through an internal autocrine loop mechanism. J Cell
Sci. 118:771–780. 2005. View Article : Google Scholar : PubMed/NCBI
|
63.
|
Roviezzo F, Tsigkos S, Kotanidou A, et al:
Angiopoietin-2 causes inflammation in vivo by promoting vascular
leakage. J Pharmacol Exp Ther. 314:738–744. 2005. View Article : Google Scholar : PubMed/NCBI
|
64.
|
Tanaka F, Yanagihara K, Otake Y, et al:
Prognostic factors in resected pathologic (p-) stage IIIA-N2, non
small cell lung cancer. Ann Surg Oncol. 11:612–618. 2004.
View Article : Google Scholar : PubMed/NCBI
|
65.
|
Tomimoto H, Yano S, Muguruma H, et al:
Levels of soluble vascular endothelial growth factor receptor 1 are
elevated in the exudative pleural effusions. J Med Invest.
54:146–153. 2007. View Article : Google Scholar : PubMed/NCBI
|
66.
|
Aiuti A, Tavian M, Cipponi A, et al:
Expression of CXCR4, the receptor for stromal cell-derived factor-1
on fetal and adult human lympho-hematopoietic progenitors. Eur J
Immunol. 29:1823–1831. 1999. View Article : Google Scholar : PubMed/NCBI
|
67.
|
Feng Y, Broder CC, Kennedy PE and Berger
EA: HIV-1 entry cofactor: functional cDNA cloning of a seven
transmembrane G, protein-coupled receptor. Science. 1272:872–877.
1996. View Article : Google Scholar
|
68.
|
Strieter RM, Belperio JA, Phillips RJ and
Keane MP: CXC chemokines in angiogenesis of cancer. Semin Cancer
Biol. 14:195–200. 2004. View Article : Google Scholar : PubMed/NCBI
|
69.
|
Phillips RJ, Burdick MD, Lutz M, et al:
The stromal derived factor-1/CXCL12-CXC chemokine receptor 4
biological axis in non-small cell lung cancer metastases. Am J
Respir Crit Care Med. 167:1676–1686. 2003. View Article : Google Scholar : PubMed/NCBI
|
70.
|
Lee BC, Lee TH, Avraham S and Avraham HK:
Involvement of the chemokine receptor CXCR4 and its ligand stromal
cell-derived factor 1alpha in breast cancer cell migration through
human brain microvascular endothelial cells. Mol Cancer Res.
2:327–338. 2004.
|
71.
|
Economidou F, Antoniou KM, Proklou A, et
al: Investigation of angiogenetic mechanisms in pleural fluid of
patients with lung cancer: preliminary results. Am J Respir Cell
Mol Biol. 179:A28762009.
|
72.
|
Kucia M, Jankowski K, Reca R, et al:
CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol
Histol. 35:233–245. 2004. View Article : Google Scholar : PubMed/NCBI
|
73.
|
Oonakahara K, Matsuyama W, Higashimoto I,
et al: Stromal-derived factor 1α/CXCL12-CXCR4 axis is involved in
the dissemination of NSCLC cells into pleural space. Am J Respir
Cell Mol Biol. 30:671–677. 2004.
|