Role of RGD-containing ligands in targeting cellular integrins: Applications for ovarian cancer virotherapy (Review)
- Authors:
- Lena J. Gamble
- Anton V. Borovjagin
- Qiana L. Matthews
-
Affiliations: Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA - Published online on: March 1, 2010 https://doi.org/10.3892/etm_00000037
- Pages: 233-240
This article is mentioned in:
Abstract
Ruoslahti E: RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 12:697–715. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hynes RO: Cell adhesion: old and new questions. Trends Cell Biol. 9:M33–M37. 1999. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6:389–395. 2000. View Article : Google Scholar : PubMed/NCBI | |
Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA and Cheresh DA: Definition of two angiogenic pathways by distinct alpha v integrins. Science. 270:1500–1502. 1995. View Article : Google Scholar : PubMed/NCBI | |
Cheresh DA: Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA. 84:6471–6475. 1987. View Article : Google Scholar | |
Horton MA: The alpha v beta 3 integrin ‘Vitronectin receptor’. Int J Biochem Cell Biol. 29:721–725. 1997. | |
Van De Wiele C, Oltenfreiter R, De Winter O, Signore A, Slegers G and Dierckx RA: Tumour angiogenesis pathways: related clinical issues and implications for nuclear medicine imaging. Eur J Nucl Med Mol Imaging. 29:699–709. 2002.PubMed/NCBI | |
Kumar CC: Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets. 4:123–131. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hynes RO: Integrins: a family of cell surface receptors. Cell. 48:549–554. 1987. View Article : Google Scholar : PubMed/NCBI | |
Smith JW, Vestal DJ, Irwin SV, Burke TA and Cheresh DA: Purification and functional characterization of integrin alpha v beta 5. An adhesion receptor for vitronectin. J Biol Chem. 265:11008–11013. 1990.PubMed/NCBI | |
Koster J: The integrin page: Alpha-v/beta-5 integrin [Webpage]. Available from: http://www.geocities.com/capecanaveral/9629/avb5.htmuri. 1997. | |
Nemeth JA, Nakada MT, Trikha M, et al: Alpha-v integrins as therapeutic targets in oncology. Cancer Invest. 25:632–646. 2007. View Article : Google Scholar : PubMed/NCBI | |
Juliano RL: Membrane receptors for extracellular matrix macro-molecules: relationship to cell adhesion and tumor metastasis. Biochim Biophys Acta. 907:261–278. 1987.PubMed/NCBI | |
Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M and Buck CA: Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 50:6757–6764. 1990.PubMed/NCBI | |
Gladson CL and Cheresh DA: Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest. 88:1924–1932. 1991. View Article : Google Scholar : PubMed/NCBI | |
Bello L, Francolini M, Marthyn P, et al: Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery. 49:380–390. 2001.PubMed/NCBI | |
Gehlsen KR, Davis GE and Sriramarao P: Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis. 10:111–120. 1992. View Article : Google Scholar : PubMed/NCBI | |
Felding-Habermann B, Mueller BM, Romerdahl CA and Cheresh DA: Involvement of integrin alpha v gene expression in human melanoma tumorigenicity. J Clin Invest. 89:2018–2022. 1992. View Article : Google Scholar : PubMed/NCBI | |
Nip J, Shibata H, Loskutoff DJ, Cheresh DA and Brodt P: Human melanoma cells derived from lymphatic metastases use integrin alpha v beta 3 to adhere to lymph node vitronectin. J Clin Invest. 90:1406–1413. 1992. View Article : Google Scholar : PubMed/NCBI | |
Gasparini G, Brooks PC, Biganzoli E, et al: Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res. 4:2625–2634. 1998.PubMed/NCBI | |
Landen CN, Kim TJ, Lin YG, et al: Tumor-selective response to antibody-mediated targeting of alphavbeta3 integrin in ovarian cancer. Neoplasia. 10:1259–1267. 2008.PubMed/NCBI | |
Pap T, Gay R and Gay S: Mechanisms of joint destruction. Rheumatoid Arthritis. New Frontiers in Pathogenesis and Treatment. Firestein GS, Panayi GS and Wollheim FA: Oxford University Press; Oxford: pp. 189–199. 2000 | |
Koch AE: The role of angiogenesis in rheumatoid arthritis: recent developments. Ann Rheum Dis. 59(Suppl 1): i65–i71. 2000. View Article : Google Scholar : PubMed/NCBI | |
Takayama K, Ueno H, Pei XH, Nakanishi Y, Yatsunami J and Hara N: The levels of integrin alpha v beta 5 may predict the susceptibility to adenovirus-mediated gene transfer in human lung cancer cells. Gene Ther. 5:361–368. 1998. View Article : Google Scholar : PubMed/NCBI | |
Scotton CJ, Krupiczojc MA, Konigshoff M, et al: Increased local expression of coagulation factor x contributes to the fibrotic response in human and murine lung injury. J Clin Invest. 119:2550–2563. 2009.PubMed/NCBI | |
Luna J, Tobe T, Mousa SA, Reilly TM and Campochiaro PA: Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Invest. 75:563–573. 1996.PubMed/NCBI | |
Kerr JS, Mousa SA and Slee AM: Alpha(v)beta(3) integrin in angiogenesis and restenosis. Drug News Perspect. 14:143–150. 2001.PubMed/NCBI | |
Klotz O, Park JK, Pleyer U, Hartmann C and Baatz H: Inhibition of corneal neovascularization by alpha(v)-integrin antagonists in the rat. Graefes Arch Clin Exp Ophthalmol. 238:88–93. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hemminki A, Belousova N, Zinn KR, et al: An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther. 4:223–231. 2001. View Article : Google Scholar | |
Arap W, Pasqualini R and Ruoslahti E: Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 279:377–380. 1998. View Article : Google Scholar : PubMed/NCBI | |
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar | |
Choi M, Fuller CD, Thomas CR Jr and Wang SJ: Conditional survival in ovarian cancer: results from the SEER dataset 1988–2001. Gynecol Oncol. 109:203–209. 2008.PubMed/NCBI | |
Bast RC Jr, Hennessy B and Mills GB: The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 9:415–428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Armstrong DK, Bundy B, Wenzel L, et al: Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 354:34–43. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schmidmaier R and Baumann P: Anti-adhesion evolves to a promising therapeutic concept in oncology. Curr Med Chem. 15:978–990. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chames P and Baty D: Antibody engineering and its applications in tumor targeting and intracellular immunization. FEMS Microbiol Lett. 189:1–8. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hudson PJ: Recombinant antibody constructs in cancer therapy. Curr Opin Immunol. 11:548–557. 1999. View Article : Google Scholar : PubMed/NCBI | |
DeNardo SJ, Kroger LA and DeNardo GL: A new era for radio-labeled antibodies in cancer? Curr Opin Immunol. 11:563–569. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pasqualini R and Ruoslahti E: Organ targeting in vivo using phage display peptide libraries. Nature. 380:364–366. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hong FD and Clayman GL: Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Cancer Res. 60:6551–6556. 2000.PubMed/NCBI | |
Wickham TJ, Roelvink PW, Brough DE and Kovesdi I: Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol. 14:1570–1573. 1996. View Article : Google Scholar : PubMed/NCBI | |
Dmitriev I, Krasnykh V, Miller CR, et al: An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 72:9706–9713. 1998. | |
Schottelius AJ, Zugel U, Docke WD, et al: The role of mitogen-activated protein kinase-activated protein kinase 2 in the p38/TNF-alpha pathway of systemic and cutaneous inflammation. J Invest Dermatol. Aug 6–2009.(Epub ahead of print). | |
Schmieder AH, Caruthers SD, Zhang H, Williams TA, Robertson JD, Wickline SA and Lanza GM: Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model. FASEB J. 22:4179–4189. 2008. View Article : Google Scholar : PubMed/NCBI | |
Leroy-Dudal J, Demeilliers C, Gallet O, et al: Transmigration of human ovarian adenocarcinoma cells through endothelial extracellular matrix involves alphav integrins and the participation of MMP2. Int J Cancer. 114:531–543. 2005. View Article : Google Scholar | |
Markland FS, Shieh K, Zhou Q, Golubkov V, Sherwin RP, Richters V and Sposto R: A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis. 31:183–191. 2001.PubMed/NCBI | |
Carreiras F, Thiebot B, Leroy-Dudal J, Maubant S, Breton MF and Darbeida H: Involvement of alphavbeta 3 integrin and disruption of endothelial fibronectin network during the adhesion of the human ovarian adenocarcinoma cell line IGROV1 on the human umbilical vein cell extracellular matrix. Int J Cancer. 99:800–808. 2002. View Article : Google Scholar | |
Maubant S, Cruet-Hennequart S, Poulain L, et al: Altered adhesion properties and alphav integrin expression in a cisplatin-resistant human ovarian carcinoma cell line. Int J Cancer. 97:186–194. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hapke S, Kessler H, Luber B, et al: Ovarian cancer cell proliferation and motility is induced by engagement of integrin alpha(v) beta3/vitronectin interaction. Biol Chem. 384:1073–1083. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gutheil JC, Campbell TN, Pierce PR, Watkins JD, Huse WD, Bodkin DJ and Cheresh DA: Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res. 6:3056–3061. 2000.PubMed/NCBI | |
Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S and DeNardo GL: Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. 62:4263–4272. 2002.PubMed/NCBI | |
Eskens FA, Dumez H, Hoekstra R, et al: Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer. 39:917–926. 2003. View Article : Google Scholar | |
Smith JW: Cilengitide Merck. Curr Opin Investig Drugs. 4:741–745. 2003. | |
Miller WH, Bondinell WE, Cousins RD, et al: Orally bioavailable nonpeptide vitronectin receptor antagonists with efficacy in an osteoporosis model. Bioorg Med Chem Lett. 9:1807–1812. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kerr JS, Wexler RS, Mousa SA, et al: Novel small molecule alpha v integrin antagonists: comparative anti-cancer efficacy with known angiogenesis inhibitors. Anticancer Res. 19:959–968. 1999.PubMed/NCBI | |
Freimuth P: A human cell line selected for resistance to adenovirus infection has reduced levels of the virus receptor. J Virol. 70:4081–4085. 1996.PubMed/NCBI | |
Huang S, Kamata T, Takada Y, Ruggeri ZM and Nemerow GR: Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol. 70:4502–4508. 1996.PubMed/NCBI | |
Goldman MJ and Wilson JM: Expression of alpha v beta 5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J Virol. 69:5951–5958. 1995.PubMed/NCBI | |
Bergelson JM, Cunningham JA, Droguett G, et al: Isolation of a common receptor for coxsackie b viruses and adenoviruses 2 and 5. Science. 275:1320–1323. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wickham TJ, Filardo EJ, Cheresh DA and Nemerow GR: Integrin alpha v beta 5 selectively promotes adenovirus-mediated cell membrane permeabilization. J Cell Biol. 127:257–264. 1994. View Article : Google Scholar : PubMed/NCBI | |
Bai M, Harfe B and Freimuth P: Mutations that alter an arg-gly-asp (rgd) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol. 67:5198–5205. 1993.PubMed/NCBI | |
Belin MT and Boulanger P: Involvement of cellular adhesion sequences in the attachment of adenovirus to the HeLa cell surface. J Gen Virol. 74:1485–1497. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wickham TJ, Mathias P, Cheresh DA and Nemerow GR: Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 73:309–319. 1993. View Article : Google Scholar : PubMed/NCBI | |
Miller CR, Buchsbaum DJ, Reynolds PN, et al: Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res. 58:5738–5748. 1998. | |
Huang S, Endo RI and Nemerow GR: Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol. 69:2257–2263. 1995.PubMed/NCBI | |
Douglas JT, Kim M, Sumerel LA, Carey DE and Curiel DT: Efficient oncolysis by a replicating adenovirus (Ad) in vivo is critically dependent on tumor expression of primary Ad receptors. Cancer Res. 61:813–817. 2001.PubMed/NCBI | |
Russell WC: Update on adenovirus and its vectors. J Gen Virol. 81:2573–2604. 2000.PubMed/NCBI | |
Kelly FJ, Miller CR, Buchsbaum DJ, Gomez-Navarro J, Barnes MN, Alvarez RD and Curiel DT: Selectivity of TAG-72-targeted adenovirus gene transfer to primary ovarian carcinoma cells versus autologous mesothelial cells in vitro. Clin Cancer Res. 6:4323–4333. 2000.PubMed/NCBI | |
Vanderkwaak TJ, Wang M, Gomez-Navarro J, et al: An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches. Gynecol Oncol. 74:227–234. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kasono K, Blackwell JL, Douglas JT, et al: Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res. 5:2571–2579. 1999.PubMed/NCBI | |
Li Y, Pong RC, Bergelson JM, et al: Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 59:325–330. 1999.PubMed/NCBI | |
Hemmi S, Geertsen R, Mezzacasa A, Peter I and Dummer R: The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther. 9:2363–2373. 1998. View Article : Google Scholar : PubMed/NCBI | |
Fechner H, Wang X, Wang H, et al: Trans-complementation of vector replication versus coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Ther. 7:1954–1968. 2000. View Article : Google Scholar | |
Cripe TP, Dunphy EJ, Holub AD, et al: Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirusadenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res. 61:2953–2960. 2001.PubMed/NCBI | |
Krasnykh V, Belousova N, Korokhov N, Mikheeva G and Curiel DT: Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage t4 fibritin. J Virol. 75:4176–4183. 2001. View Article : Google Scholar : PubMed/NCBI | |
Goldman CK, Rogers BE, Douglas JT, et al: Targeted gene delivery to Kaposi’s sarcoma cells via the fibroblast growth factor receptor. Cancer Res. 57:1447–1451. 1997. | |
Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M and Curiel DT: Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol. 14:1574–1578. 1996. View Article : Google Scholar : PubMed/NCBI | |
Stevenson SC, Rollence M, Marshall-Neff J and McClelland A: Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. J Virol. 71:4782–4790. 1997.PubMed/NCBI | |
Von Seggern DJ, Huang S, Fleck SK, Stevenson SC and Nemerow GR: Adenovirus vector pseudotyping in fiber-expressing cell lines: improved transduction of Epstein-barr virus-transformed B cells. J Virol. 74:354–362. 2000.PubMed/NCBI | |
Wu H, Seki T, Dmitriev I, Uil T, Kashentseva E, Han T and Curiel DT: Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Hum Gene Ther. 13:1647–1653. 2002. View Article : Google Scholar | |
Asaoka K, Tada M, Sawamura Y, Ikeda J and Abe H: Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the coxsackievirus and adenovirus receptor. J Neurosurg. 92:1002–1008. 2000. View Article : Google Scholar : PubMed/NCBI | |
Grill J, van Beusechem VW, van Der Valk P, et al: Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin Cancer Res. 7:641–650. 2001.PubMed/NCBI | |
Kanerva A, Wang M, Bauerschmitz GJ, et al: Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther. 5:695–704. 2002. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT and Alemany R: A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res. 7:120–126. 2001.PubMed/NCBI | |
Bauerschmitz GJ, Lam JT, Kanerva A, et al: Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res. 62:1266–1270. 2002.PubMed/NCBI | |
Mathis JM, Stoff-Khalili MA and Curiel DT: Oncolytic adenoviruses – selective retargeting to tumor cells. Oncogene. 24:7775–7791. 2005. | |
Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M and Yeh P: RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol. 73:5156–5161. 1999.PubMed/NCBI | |
Wu H, Han T, Lam JT, et al: Preclinical evaluation of a class of infectivity-enhanced adenoviral vectors in ovarian cancer gene therapy. Gene Ther. 11:874–878. 2004. View Article : Google Scholar : PubMed/NCBI | |
Borovjagin AV, Krendelchtchikov A, Ramesh N, Yu DC, Douglas JT and Curiel DT: Complex mosaicism is a novel approach to infectivity enhancement of adenovirus type 5-based vectors. Cancer Gene Ther. 12:475–486. 2005.PubMed/NCBI | |
Hesse A, Kosmides D, Kontermann RE and Nettelbeck DM: Tropism modification of adenovirus vectors by peptide ligand insertion into various positions of the adenovirus serotype 41 short-fiber knob domain. J Virol. 81:2688–2699. 2007. View Article : Google Scholar | |
Page JG, Tian B, Schweikart K, et al: Identifying the safety profile of a novel infectivity-enhanced conditionally replicative adenovirus, Ad5-delta24-RGD, in anticipation of a phase I trial for recurrent ovarian cancer. Am J Obstet Gynecol. 196(389): e9–10. 2007. | |
Parker AL, Waddington SN, Nicol CG, et al: Multiple vitamin k-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood. 108:2554–2561. 2006. View Article : Google Scholar : PubMed/NCBI | |
Blackwell JL, Li H, Gomez-Navarro J, et al: Using a tropismmodified adenoviral vector to circumvent inhibitory factors in ascites fluid. Hum Gene Ther. 11:1657–1669. 2000. View Article : Google Scholar : PubMed/NCBI | |
Elkas J, Baldwin R, Pegram M, Tseng Y and Karlan B: Immunoglobulin in ovarian cancer ascites inhibits viral infection: implications for adenoviral-mediated gene therapy. Gynecol Oncol. 72:4561999. | |
Kanerva A, Mikheeva GV, Krasnykh V, et al: Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res. 8:275–280. 2002.PubMed/NCBI | |
Yu W and Fang H: Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets. 7:141–148. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marshall E: Gene therapy death prompts review of adenovirus vector. Science. 286:2244–2245. 1999. View Article : Google Scholar : PubMed/NCBI | |
Beardsley T: Gene therapy setback. Sci Am. 282:36–37. 2000. View Article : Google Scholar | |
Jenks S: Gene therapy death – ‘Everyone has to share in the guilt’. J Natl Cancer Inst. 92:98–100. 2000. | |
Miller HI: Gene therapy on trial. Science. 287:591–592. 2000. View Article : Google Scholar | |
Raper SE, Yudkoff M, Chirmule N, et al: A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther. 13:163–175. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shirakawa T: The current status of adenovirus-based cancer gene therapy. Mol Cells. 25:462–466. 2008.PubMed/NCBI | |
Barnes MN, Coolidge CJ, Hemminki A, Alvarez RD and Curiel DT: Conditionally replicative adenoviruses for ovarian cancer therapy. Mol Cancer Ther. 1:435–439. 2002.PubMed/NCBI | |
Young A and McNeish IA: Oncolytic adenoviral gene therapy in ovarian cancer: why we are not wasting our time. Future Oncol. 5:339–357. 2009. View Article : Google Scholar : PubMed/NCBI | |
O’Shea CC, Johnson L, Bagus B, et al: Late viral RNA export, rather than p53 inactivation, determines Onyx-015 tumor selectivity. Cancer Cell. 6:611–623. 2004.PubMed/NCBI | |
Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B and Kay MA: The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol. 71:8798–8807. 1997.PubMed/NCBI | |
Tao N, Gao GP, Parr M, et al: Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther. 3:28–35. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wolff G, Worgall S, van Rooijen N, Song WR, Harvey BG and Crystal RG: Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol. 71:624–629. 1997.PubMed/NCBI | |
Alemany R and Curiel DT: CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther. 8:1347–1353. 2001. View Article : Google Scholar : PubMed/NCBI | |
Smith TA, Idamakanti N, Rollence ML, et al: Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther. 14:777–787. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shayakhmetov DM, Gaggar A, Ni S, Li ZY and Lieber A: Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol. 79:7478–7491. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL and Shayakhmetov DM: Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA. 105:5483–5488. 2008. View Article : Google Scholar : PubMed/NCBI | |
Waddington SN, McVey JH, Bhella D, et al: Adenovirus serotype 5 hexon mediates liver gene transfer. Cell. 132:397–409. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alvarez RD, Barnes MN, Gomez-Navarro J, et al: A cancer gene therapy approach utilizing an anti-erbb-2 single-chain antibody-encoding adenovirus (Ad21): a phase I trial. Clin Cancer Res. 6:3081–3087. 2000.PubMed/NCBI | |
Alvarez RD, Gomez-Navarro J, Wang M, et al: Adenoviral-mediated suicide gene therapy for ovarian cancer. Mol Ther. 2:524–530. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hasenburg A, Tong XW, Rojas-Martinez A, et al: Thymidine kinase gene therapy with concomitant topotecan chemotherapy for recurrent ovarian cancer. Cancer Gene Ther. 7:839–844. 2000. View Article : Google Scholar : PubMed/NCBI | |
Alvarez RD and Curiel DT: A phase I study of recombinant adenovirus vector-mediated delivery of an anti-erbb-2 single-chain (sFv) antibody gene for previously treated ovarian and extraovarian cancer patients. Hum Gene Ther. 8:229–242. 1997. View Article : Google Scholar | |
Buller RE, Shahin MS, Horowitz JA, et al: Long term follow-up of patients with recurrent ovarian cancer after Ad p53 gene replacement with SCH 58500. Cancer Gene Ther. 9:567–572. 2002. View Article : Google Scholar : PubMed/NCBI | |
Muller C, Coleman RL, Rogers P, et al: Phase I intraperitoneal p53 gene transfer in ovarian cancer. American Society of Clinical Oncology. 2001. | |
Kanerva A, Bauerschmitz GJ, Yamamoto M, et al: A cyclooxygenase-2 promoter-based conditionally replicating adenovirus with enhanced infectivity for treatment of ovarian adenocarcinoma. Gene Ther. 11:552–559. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dmitriev IP, Kashentseva EA and Curiel DT: Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol. 76:6893–6899. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vellinga J, Rabelink MJ, Cramer SJ, et al: Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol. 78:3470–3479. 2004. View Article : Google Scholar : PubMed/NCBI |