Role of microRNAs as novel diagnostic biomarkers and potential therapeutic targets for hearing disorders (Review)
- Authors:
- Alessandro Lavoro
- Giuseppe Gattuso
- Caterina Maria Grillo
- Demetrios A. Spandidos
- Mario Salmeri
- Cinzia Lombardo
- Saverio Candido
- Luca Falzone
-
Affiliations: Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy, Department of Medical Sciences, Surgical and Advanced Technologies ‘GF Ingrassia’, University of Catania, I‑95123 Catania, Italy, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: September 2, 2022 https://doi.org/10.3892/ije.2022.12
- Article Number: 3
-
Copyright: © Lavoro et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Anthwal N and Thompson H: The development of the mammalian outer and middle ear. J Anat. 228:217–232. 2016.PubMed/NCBI View Article : Google Scholar | |
Pfaff C, Schultz JA and Schellhorn R: The vertebrate middle and inner ear: A short overview. J Morphol. 280:1098–1105. 2019.PubMed/NCBI View Article : Google Scholar | |
Anthwal N, Joshi L and Tucker AS: Evolution of the mammalian middle ear and jaw: Adaptations and novel structures. J Anat. 222:147–160. 2013.PubMed/NCBI View Article : Google Scholar | |
Goutman JD, Elgoyhen AB and Gómez-Casati ME: Cochlear hair cells: The sound-sensing machines. FEBS Lett. 589:3354–3361. 2015.PubMed/NCBI View Article : Google Scholar | |
Driver EC and Kelley MW: Development of the cochlea. Development. 147(dev162263)2020.PubMed/NCBI View Article : Google Scholar | |
Fuchs JC and Tucker AS: Development and integration of the ear. Curr Top Dev Biol. 115:213–232. 2015.PubMed/NCBI View Article : Google Scholar | |
Szmuilowicz J and Young R: Infections of the Ear. Emerg Med Clin North Am. 37:1–9. 2019.PubMed/NCBI View Article : Google Scholar | |
Sone M: Inner ear disturbances related to middle ear inflammation. Nagoya J Med Sci. 79:1–7. 2017.PubMed/NCBI View Article : Google Scholar | |
Uchida Y, Sugiura S, Nishita Y, Saji N, Sone M and Ueda H: Age-related hearing loss and cognitive decline-The potential mechanisms linking the two. Auris Nasus Larynx. 46:1–9. 2019.PubMed/NCBI View Article : Google Scholar | |
Themann CL and Masterson EA: Occupational noise exposure: A review of its effects, epidemiology, and impact with recommendations for reducing its burden. J Acoust Soc Am. 146(3879)2019.PubMed/NCBI View Article : Google Scholar | |
Ohgami N, Iida M, Yajima I, Tamura H, Ohgami K and Kato M: Hearing impairments caused by genetic and environmental factors. Environ Health Prev Med. 18:10–15. 2013.PubMed/NCBI View Article : Google Scholar | |
Provenzano MJ and Domann FE: A role for epigenetics in hearing: Establishment and maintenance of auditory specific gene expression patterns. Hear Res. 233:1–13. 2007.PubMed/NCBI View Article : Google Scholar | |
Giambò F, Leone GM, Gattuso G, Rizzo R, Cosentino A, Cinà D, Teodoro M, Costa C, Tsatsakis A, Fenga C and Falzone L: Genetic and epigenetic alterations induced by pesticide exposure: Integrated analysis of gene expression, microRNA expression, and DNA methylation datasets. Int J Environ Res Public Health. 18(8697)2021.PubMed/NCBI View Article : Google Scholar | |
Filetti V, Loreto C, Falzone L, Lombardo C, Cannizzaro E, Castorina S, Ledda C and Rapisarda V: Diagnostic and prognostic value of three microRNAs in environmental asbestiform fibers-associated malignant mesothelioma. J Pers Med. 11(1205)2021.PubMed/NCBI View Article : Google Scholar | |
Filetti V, Falzone L, Rapisarda V, Caltabiano R, Eleonora Graziano AC, Ledda C and Loreto C: Modulation of microRNA expression levels after naturally occurring asbestiform fibers exposure as a diagnostic biomarker of mesothelial neoplastic transformation. Ecotoxicol Environ Saf. 198(110640)2020.PubMed/NCBI View Article : Google Scholar | |
Macfarlane LA and Murphy PR: MicroRNA: Biogenesis, function and role in cancer. Curr Genomics. 11:537–561. 2010.PubMed/NCBI View Article : Google Scholar | |
Hammond SM: An overview of microRNAs. Adv Drug Deliv Rev. 87:3–14. 2015.PubMed/NCBI View Article : Google Scholar | |
Faller M and Guo F: MicroRNA biogenesis: There's more than one way to skin a cat. Biochim Biophys Acta. 1779:663–667. 2008.PubMed/NCBI View Article : Google Scholar | |
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004.PubMed/NCBI View Article : Google Scholar | |
Kwon SC, Nguyen TA, Choi YG, Jo MH, Hohng S, Kim VN and Woo JS: Structure of Human DROSHA. Cell. 164:81–90. 2016.PubMed/NCBI View Article : Google Scholar | |
Yi R, Qin Y, Macara IG and Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17:3011–3016. 2003.PubMed/NCBI View Article : Google Scholar | |
Wu K, He J, Pu W and Peng Y: The role of exportin-5 in MicroRNA biogenesis and cancer. Genomics Proteomics Bioinformatics. 16:120–126. 2018.PubMed/NCBI View Article : Google Scholar | |
Koscianska E, Starega-Roslan J and Krzyzosiak WJ: The role of Dicer protein partners in the processing of microRNA precursors. PLoS One. 6(e28548)2011.PubMed/NCBI View Article : Google Scholar | |
Kobayashi H and Tomari Y: RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta. 1859:71–81. 2016.PubMed/NCBI View Article : Google Scholar | |
Sarshad AA, Juan AH, Muler AIC, Anastasakis DG, Wang X, Genzor P, Feng X, Tsai PF, Sun HW, Haase AD, et al: Argonaute-miRNA complexes silence target mRNAs in the nucleus of mammalian stem cells. Mol Cell. 71:1040–1050.e8. 2018.PubMed/NCBI View Article : Google Scholar | |
Behm-Ansmant I, Rehwinkel J and Izaurralde E: MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol. 71:523–530. 2006.PubMed/NCBI View Article : Google Scholar | |
Fabian MR and Sonenberg N: The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat Struct Mol Biol. 19:586–593. 2012.PubMed/NCBI View Article : Google Scholar | |
Crimi S, Falzone L, Gattuso G, Grillo CM, Candido S, Bianchi A and Libra M: Droplet Digital PCR analysis of liquid biopsy samples unveils the diagnostic role of hsa-miR-133a-3p and hsa-miR-375-3p in oral cancer. Biology (Basel). 9(379)2020.PubMed/NCBI View Article : Google Scholar | |
Falzone L, Grimaldi M, Celentano E, Augustin LSA and Libra M: Identification of modulated MicroRNAs associated with breast cancer, diet, and physical activity. Cancers (Basel). 12(2555)2020.PubMed/NCBI View Article : Google Scholar | |
Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra M and Falzone L: The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer's disease. Oncol Rep. 42:911–922. 2019.PubMed/NCBI View Article : Google Scholar | |
Yeh CH, Moles R and Nicot C: Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer. 15(37)2016.PubMed/NCBI View Article : Google Scholar | |
Mahmoodian Sani MR, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS and Ghasemi-Dehkordi P: MicroRNA-183 family in inner ear: Hair cell development and deafness. J Audiol Otol. 20:131–138. 2016.PubMed/NCBI View Article : Google Scholar | |
Sekine K, Matsumura T, Takizawa T, Kimura Y, Saito S, Shiiba K, Shindo S, Okubo K and Ikezono T: Expression profiling of MicroRNAs in the inner ear of elderly people by real-time PCR quantification. Audiol Neurootol. 22:135–145. 2017.PubMed/NCBI View Article : Google Scholar | |
Van den Ackerveken P, Mounier A, Huyghe A, Sacheli R, Vanlerberghe PB, Volvert ML, Delacroix L, Nguyen L and Malgrange B: The miR-183/ItgA3 axis is a key regulator of prosensory area during early inner ear development. Cell Death Differ. 24:2054–2065. 2017.PubMed/NCBI View Article : Google Scholar | |
Cao H, Shi J, Du J, Chen K, Dong C, Jiang D and Jiang H: MicroRNA-194 regulates the development and differentiation of sensory patches and statoacoustic ganglion of inner ear by Fgf4. Med Sci Monit. 24:1712–1723. 2018.PubMed/NCBI View Article : Google Scholar | |
Khan S and Chang R: Anatomy of the vestibular system: A review. NeuroRehabilitation. 32:437–443. 2013.PubMed/NCBI View Article : Google Scholar | |
Ekdale EG: Form and function of the mammalian inner ear. J Anat. 228:324–337. 2016.PubMed/NCBI View Article : Google Scholar | |
Hudspeth AJ: Integrating the active process of hair cells with cochlear function. Nat Rev Neurosci. 15:600–614. 2014.PubMed/NCBI View Article : Google Scholar | |
Kopecky BJ, Jahan I and Fritzsch B: Correct timing of proliferation and differentiation is necessary for normal inner ear development and auditory hair cell viability. Dev Dyn. 242:132–147. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhong C, Fu Y, Pan W, Yu J and Wang J: Atoh1 and other related key regulators in the development of auditory sensory epithelium in the mammalian inner ear: Function and interplay. Dev Biol. 446:133–141. 2019.PubMed/NCBI View Article : Google Scholar | |
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN and Fritzsch B: Development in the mammalian auditory system depends on transcription factors. Int J Mol Sci. 22(4189)2021.PubMed/NCBI View Article : Google Scholar | |
Shin JO, Ankamreddy H, Jakka NM, Lee S, Kim UK and Bok J: Temporal and spatial expression patterns of Hedgehog receptors in the developing inner and middle ear. Int J Dev Biol. 61:557–563. 2017.PubMed/NCBI View Article : Google Scholar | |
Żak M, Klis SF and Grolman W: The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential. Int J Dev Neurosci. 47:247–258. 2015.PubMed/NCBI View Article : Google Scholar | |
Jiang D, Du J, Zhang X, Zhou W, Zong L, Dong C, Chen K, Chen Y, Chen X and Jiang H: miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells. Int J Mol Med. 38:1367–1376. 2016.PubMed/NCBI View Article : Google Scholar | |
Du J, Zhang X, Cao H, Jiang D, Wang X, Zhou W, Chen K, Zhou J, Jiang H and Ba L: MiR-194 is involved in morphogenesis of spiral ganglion neurons in inner ear by rearranging actin cytoskeleton via targeting RhoB. Int J Dev Neurosci. 63:16–26. 2017.PubMed/NCBI View Article : Google Scholar | |
Geng R, Furness DN, Muraleedharan CK, Zhang J, Dabdoub A, Lin V and Xu S: The microRNA-183/96/182 cluster is essential for stereociliary bundle formation and function of cochlear sensory hair cells. Sci Rep. 8(18022)2018.PubMed/NCBI View Article : Google Scholar | |
Brown CS, Emmett SD, Robler SK and Tucci DL: Global hearing loss prevention. Otolaryngol Clin North Am. 51:575–592. 2018.PubMed/NCBI View Article : Google Scholar | |
World Health Organization (WHO): Deafness and hearing loss. WHO, Geneva, 2022. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss. Accessed April 1, 2022. | |
Edmiston R and Mitchell C: Hearing loss in adults. BMJ. 346(f2496)2013.PubMed/NCBI View Article : Google Scholar | |
Horowitz G, Ungar OJ, Levit Y, Himmelfarb M and Handzel O: The impact of conductive hearing loss on balance. Clin Otolaryngol. 45:106–110. 2020.PubMed/NCBI View Article : Google Scholar | |
Michels TC, Duffy MT and Rogers DJ: Hearing loss in adults: Differential diagnosis and treatment. Am Fam Physician. 100:98–108. 2019.PubMed/NCBI | |
Cunningham LL and Tucci DL: Hearing loss in adults. N Engl J Med. 377:2465–2473. 2017.PubMed/NCBI View Article : Google Scholar | |
Amanipour RM, Zhu X, Duvey G, Celanire S, Walton JP and Frisina RD: Noise-Induced hearing loss in mice: Effects of high and low levels of noise trauma in CBA mice. Annu Int Conf IEEE Eng Med Biol Soc. 2018:1210–1213. 2018.PubMed/NCBI View Article : Google Scholar | |
Lin BM, Wang M, Stankovic KM, Eavey R, McKenna MJ, Curhan GC and Curhan SG: Cigarette smoking, smoking cessation, and risk of hearing loss in women. Am J Med. 133:1180–1186. 2020.PubMed/NCBI View Article : Google Scholar | |
Haugnes HS, Stenklev NC, Brydøy M, Dahl O, Wilsgaard T, Laukli E and Fosså SD: Hearing loss before and after cisplatin-based chemotherapy in testicular cancer survivors: A longitudinal study. Acta Oncol. 57:1075–1083. 2018.PubMed/NCBI View Article : Google Scholar | |
Yang T, Guo L, Wang L and Yu X: Diagnosis, intervention, and prevention of genetic hearing loss. Adv Exp Med Biol. 1130:73–92. 2019.PubMed/NCBI View Article : Google Scholar | |
Bowl MR and Dawson SJ: Age-Related hearing loss. Cold Spring Harb Perspect Med. 9(a033217)2019.PubMed/NCBI View Article : Google Scholar | |
Xue T, Wei L, Zha DJ, Qiu JH, Chen FQ, Qiao L and Qiu Y: miR-29b overexpression induces cochlear hair cell apoptosis through the regulation of SIRT1/PGC-1α signaling: Implications for age-related hearing loss. Int J Mol Med. 38:1387–1394. 2016.PubMed/NCBI View Article : Google Scholar | |
Pang J, Xiong H, Lin P, Lai L, Yang H, Liu Y, Huang Q, Chen S, Ye Y, Sun Y and Zheng Y: Activation of miR-34a impairs autophagic flux and promotes cochlear cell death via repressing ATG9A: Implications for age-related hearing loss. Cell Death Dis. 8(e3079)2017.PubMed/NCBI View Article : Google Scholar | |
Li YH, Yang Y, Yan YT, Xu LW, Ma HY, Shao YX, Cao CJ, Wu X, Qi MJ, Wu YY, et al: Analysis of serum microRNA expression in male workers with occupational noise-induced hearing loss. Braz J Med Biol Res. 51(e6426)2018.PubMed/NCBI View Article : Google Scholar | |
Nunez DA, Wijesinghe P, Nabi S, Yeh D and Garnis C: microRNAs in sudden hearing loss. Laryngoscope. 130:E416–E422. 2020.PubMed/NCBI View Article : Google Scholar | |
Gheorghe DC, Niculescu AG, Bîrcă AC and Grumezescu AM: Nanoparticles for the treatment of inner ear infections. Nanomaterials (Basel). 11(1311)2021.PubMed/NCBI View Article : Google Scholar | |
Cohen BE, Durstenfeld A and Roehm PC: Viral causes of hearing loss: A review for hearing health professionals. Trends Hear. 18(2331216514541361)2014.PubMed/NCBI View Article : Google Scholar | |
Palma S, Roversi MF, Bettini M, Mazzoni S, Pietrosemoli P, Lucaccioni L, Berardi A and Genovese E: Hearing loss in children with congenital cytomegalovirus infection: An 11-year retrospective study based on laboratory database of a tertiary paediatric hospital. Acta Otorhinolaryngol Ital. 39:40–45. 2019.PubMed/NCBI View Article : Google Scholar | |
Caroça C, Vicente V, Campelo P, Chasqueira M, Caria H, Silva S, Paixão P and Paço J: Rubella in Sub-Saharan Africa and sensorineural hearing loss: A case control study. BMC Public Health. 17(146)2017.PubMed/NCBI View Article : Google Scholar | |
Himmelein S, Lindemann A, Sinicina I, Horn AKE, Brandt T, Strupp M and Hüfner K: differential involvement during latent herpes simplex virus 1 infection of the superior and inferior divisions of the vestibular Ganglia: Implications for vestibular neuritis. J Virol. 91:e00331–17. 2017.PubMed/NCBI View Article : Google Scholar | |
Yee KT, Neupane B, Bai F and Vetter DE: Zika virus infection causes widespread damage to the inner ear. Hear Res. 395(108000)2020.PubMed/NCBI View Article : Google Scholar | |
Van Hoecke H, De Paepe AS, Lambert E, Van Belleghem JD, Cools P, Van Simaey L, Deschaght P, Vaneechoutte M and Dhooge I: Haemophilus influenzae biofilm formation in chronic otitis media with effusion. Eur Arch Otorhinolaryngol. 273:3553–3560. 2016.PubMed/NCBI View Article : Google Scholar | |
Rosenblut A, Napolitano C, Pereira A, Moreno C, Kolhe D, Lepetic A and Ortega-Barria E: Etiology of acute otitis media and serotype distribution of Streptococcus pneumoniae and Haemophilus influenzae in Chilean children <5 years of age. Medicine (Baltimore). 96(e5974)2017.PubMed/NCBI View Article : Google Scholar | |
Emami A, Pirbonyeh N, Moattari A, Bazargani A and Motamedifar M: Risk of otitis media with effusion (OME) in children by Pseudomonas aeruginosa. Int J Pediatr Otorhinolaryngol. 125:6–10. 2019.PubMed/NCBI View Article : Google Scholar | |
Ozturk A, Cetintas İ, Bayraktar M and İynen İ: Evaluation of microbial agents and their antibiotic susceptibility profiles in patients with chronic suppurative otitis media. Int J Clin Pract. 75(e14382)2021.PubMed/NCBI View Article : Google Scholar | |
Sillanpää S, Oikarinen S, Sipilä M, Kramna L, Rautiainen M, Huhtala H, Aittoniemi J, Laranne J, Hyöty H and Cinek O: Moraxella catarrhalis might be more common than expected in acute otitis media in young finnish children. J Clin Microbiol. 54:2373–2379. 2016.PubMed/NCBI View Article : Google Scholar | |
Møller MN, Brandt C, Østergaard C and Caye-Thomasen P: Bacterial invasion of the inner ear in association with pneumococcal meningitis. Otol Neurotol. 35:e178–e186. 2014.PubMed/NCBI View Article : Google Scholar | |
Niedzielski A, Chmielik LP and Stankiewicz T: The formation of biofilm and bacteriology in otitis media with effusion in children: A prospective cross-sectional study. Int J Environ Res Public Health. 18(3555)2021.PubMed/NCBI View Article : Google Scholar | |
Mofatteh MR, Shahabian Moghaddam F, Yousefi M and Namaei MH: A study of bacterial pathogens and antibiotic susceptibility patterns in chronic suppurative otitis media. J Laryngol Otol. 132:41–45. 2018.PubMed/NCBI View Article : Google Scholar | |
Ali K, Hamed MA, Hassan H, Esmail A and Sheneef A: Identification of fungal pathogens in otomycosis and their drug sensitivity: Our experience. Int Arch Otorhinolaryngol. 22:400–403. 2018.PubMed/NCBI View Article : Google Scholar | |
Kiakojuri K, Mahdavi Omran S, Roodgari S, Taghizadeh Armaki M, Hedayati MT, Shokohi T, Haghani I, Javidnia J, Kermani F, Badali H and Abastabar M: Molecular identification and antifungal susceptibility of yeasts and molds isolated from patients with otomycosis. Mycopathologia. 186:245–257. 2021.PubMed/NCBI View Article : Google Scholar | |
Hajioff D and MacKeith S: Otitis externa. BMJ Clin Evid. 2015(0510)2015.PubMed/NCBI | |
Candido S, Tomasello BMR, Lavoro A, Falzone L, Gattuso G and Libra M: Novel insights into epigenetic regulation of IL6 pathway: In silico perspective on inflammation and cancer relationship. Int J Mol Sci. 22(10172)2021.PubMed/NCBI View Article : Google Scholar | |
Sonkoly E and Pivarcsi A: microRNAs in inflammation. Int Rev Immunol. 28:535–561. 2009.PubMed/NCBI View Article : Google Scholar | |
Rudnicki A, Shivatzki S, Beyer LA, Takada Y, Raphael Y and Avraham KB: microRNA-224 regulates Pentraxin 3, a component of the humoral arm of innate immunity, in inner ear inflammation. Hum Mol Genet. 23:3138–3146. 2014.PubMed/NCBI View Article : Google Scholar | |
Samuels TL, Yan J, Khampang P, MacKinnon A, Hong W, Johnston N and Kerschner JE: Association of microRNA 146 with middle ear hyperplasia in pediatric otitis media. Int J Pediatr Otorhinolaryngol. 88:104–108. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang J, He J, Luo Y, Liu Y and Fan X: miR-210 regulates the inflammation of otitis media with effusion by inhibiting the expression of hypoxia-inducible factor (HIF)-1a. Biochem Biophys Res Commun. 534:401–407. 2021.PubMed/NCBI View Article : Google Scholar | |
Frye MD, Ryan AF and Kurabi A: Inflammation associated with noise-induced hearing loss. J Acoust Soc Am. 146(4020)2019.PubMed/NCBI View Article : Google Scholar | |
Kociszewska D and Vlajkovic S: Age-Related hearing loss: The link between inflammaging, immunosenescence, and gut dysbiosis. Int J Mol Sci. 23(7348)2022.PubMed/NCBI View Article : Google Scholar | |
Lassale C, Vullo P, Cadar D, Batty GD, Steptoe A and Zaninotto P: Association of inflammatory markers with hearing impairment: The English Longitudinal study of ageing. Brain Behav Immun. 83:112–119. 2020.PubMed/NCBI View Article : Google Scholar | |
Lanvers-Kaminsky C, Zehnhoff-Dinnesen AA, Parfitt R and Ciarimboli G: Drug-induced ototoxicity: Mechanisms, pharmacogenetics, and protective strategies. Clin Pharmacol Ther. 101:491–500. 2017.PubMed/NCBI View Article : Google Scholar | |
Kros CJ and Steyger PS: Aminoglycoside- and cisplatin-induced ototoxicity: Mechanisms and otoprotective strategies. Cold Spring Harb Perspect Med. 9(a033548)2019.PubMed/NCBI View Article : Google Scholar | |
Gattuso G, Falzone L, Costa C, Giambò F, Teodoro M, Vivarelli S, Libra M and Fenga C: Chronic pesticide exposure in farm workers is associated with the epigenetic modulation of hsa-miR-199a-5p. Int J Environ Res Public Health. 19(7018)2022.PubMed/NCBI View Article : Google Scholar | |
Gatto MP, Fioretti M, Fabrizi G, Gherardi M, Strafella E and Santarelli L: Effects of potential neurotoxic pesticides on hearing loss: A review. Neurotoxicology. 42:24–32. 2014.PubMed/NCBI View Article : Google Scholar | |
Hoshino ACH, Pacheco-Ferreira H, Taguchi CK, Tomita S and de Fátima Miranda M: Ototoxicity study in workers exposed to organophosphate. Braz J Otorhinolaryngol. 74:912–918. 2008.PubMed/NCBI View Article : Google Scholar | |
DiSogra RM: Common aminoglycosides and platinum-based ototoxic drugs: Cochlear/vestibular side effects and incidence. Semin Hear. 40:104–107. 2019.PubMed/NCBI View Article : Google Scholar | |
Gersten BK, Fitzgerald TS, Fernandez KA and Cunningham LL: Ototoxicity and platinum uptake following cyclic administration of platinum-based chemotherapeutic agents. J Assoc Res Otolaryngol. 21:303–321. 2020.PubMed/NCBI View Article : Google Scholar | |
Xie J, Talaska AE and Schacht J: New developments in aminoglycoside therapy and ototoxicity. Hear Res. 281:28–37. 2011.PubMed/NCBI View Article : Google Scholar | |
Ding D, Liu H, Qi W, Jiang H, Li Y, Wu X, Sun H, Gross K and Salvi R: Ototoxic effects and mechanisms of loop diuretics. J Otol. 11:145–156. 2016.PubMed/NCBI View Article : Google Scholar | |
Ikeda AK, Prince AA, Chen JX, Lieu JEC and Shin JJ: Macrolide-associated sensorineural hearing loss: A systematic review. Laryngoscope. 128:228–236. 2018.PubMed/NCBI View Article : Google Scholar | |
Altissimi G, Colizza A, Cianfrone G, de Vincentiis M, Greco A, Taurone S, Musacchio A, Ciofalo A, Turchetta R, Angeletti D and Ralli M: Drugs inducing hearing loss, tinnitus, dizziness and vertigo: An updated guide. Eur Rev Med Pharmacol Sci. 24:7946–7952. 2020.PubMed/NCBI View Article : Google Scholar | |
Landier W, Knight K, Wong FL, Lee J, Thomas O, Kim H, Kreissman SG, Schmidt ML, Chen L, London WB, et al: Ototoxicity in children with high-risk neuroblastoma: Prevalence, risk factors, and concordance of grading scales-a report from the Children's oncology group. J Clin Oncol. 32:527–534. 2014.PubMed/NCBI View Article : Google Scholar | |
Waissbluth S, Del Valle Á, Chuang A and Becker A: Incidence and associated risk factors for platinum-induced ototoxicity in pediatric patients. Int J Pediatr Otorhinolaryngol. 111:174–179. 2018.PubMed/NCBI View Article : Google Scholar | |
Wei M and Yuan X: Cisplatin-induced ototoxicity in children with solid tumor. J Pediatr Hematol Oncol. 41:e97–e100. 2019.PubMed/NCBI View Article : Google Scholar | |
Landier W: Ototoxicity and cancer therapy. Cancer. 122:1647–1658. 2016.PubMed/NCBI View Article : Google Scholar | |
Ganesan P, Schmiedge J, Manchaiah V, Swapna S, Dhandayutham S and Kothandaraman PP: Ototoxicity: A challenge in diagnosis and treatment. J Audiol Otol. 22:59–68. 2018.PubMed/NCBI View Article : Google Scholar | |
Kim CW, Han JH, Wu L and Choi JY: microRNA-183 is essential for hair cell regeneration after neomycin injury in zebrafish. Yonsei Med J. 59:141–147. 2018.PubMed/NCBI View Article : Google Scholar | |
Lee SH, Ju HM, Choi JS, Ahn Y, Lee S and Seo YJ: Circulating Serum miRNA-205 as a diagnostic biomarker for ototoxicity in mice treated with aminoglycoside antibiotics. Int J Mol Sci. 19(2836)2018.PubMed/NCBI View Article : Google Scholar | |
Li J, Ling Y, Huang W, Sun L, Li Y, Wang C, Zhang Y, Wang X, Dahlgren RA and Wang H: Regulatory mechanisms of miR-96 and miR-184 abnormal expressions on otic vesicle development of zebrafish following exposure to β-diketone antibiotics. Chemosphere. 214:228–238. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen J, Liu Z, Yan H, Xing W, Mi W, Wang R, Li W, Chen F, Qiu J and Zha D: miR-182 prevented ototoxic deafness induced by co-administration of kanamycin and furosemide in rats. Neurosci Lett. 723(134861)2020.PubMed/NCBI View Article : Google Scholar | |
Stangerup SE, Caye-Thomasen P, Tos M and Thomsen J: The natural history of vestibular schwannoma. Otol Neurotol. 27:547–552. 2006.PubMed/NCBI View Article : Google Scholar | |
Paldor I, Chen AS and Kaye AH: Growth rate of vestibular schwannoma. J Clin Neurosci. 32:1–8. 2016.PubMed/NCBI View Article : Google Scholar | |
Sughrue ME, Yang I, Aranda D, Rutkowski MJ, Fang S, Cheung SW and Parsa AT: Beyond audiofacial morbidity after vestibular schwannoma surgery. J Neurosurg. 114:367–374. 2011.PubMed/NCBI View Article : Google Scholar | |
Halliday J, Rutherford SA, McCabe MG and Evans DG: An update on the diagnosis and treatment of vestibular schwannoma. Expert Rev Neurother. 18:29–39. 2018.PubMed/NCBI View Article : Google Scholar | |
Yao L, Alahmari M, Temel Y and Hovinga K: Therapy of sporadic and NF2-Related vestibular schwannoma. Cancers (Basel). 12(835)2020.PubMed/NCBI View Article : Google Scholar | |
Pandrangi VC, Han AY, Alonso JE, Peng KA and St John MA: An update on epidemiology and management trends of vestibular schwannomas. Otol Neurotol. 41:411–417. 2020.PubMed/NCBI View Article : Google Scholar | |
Andersen JF, Nilsen KS, Vassbotn FS, Møller P, Myrseth E, Lund-Johansen M and Goplen FK: Predictors of vertigo in patients with untreated vestibular schwannoma. Otol Neurotol. 36:647–652. 2015.PubMed/NCBI View Article : Google Scholar | |
Kaul V and Cosetti MK: Management of vestibular schwannoma (Including NF2): Facial nerve considerations. Otolaryngol Clin North Am. 51:1193–1212. 2018.PubMed/NCBI View Article : Google Scholar | |
Dunn IF, Bi WL, Mukundan S, Delman BN, Parish J, Atkins T, Asher AL and Olson JJ: Congress of neurological surgeons systematic review and evidence-based guidelines on the role of imaging in the diagnosis and management of patients with vestibular schwannomas. Neurosurgery. 82:E32–E34. 2018.PubMed/NCBI View Article : Google Scholar | |
Goldbrunner R, Weller M, Regis J, Lund-Johansen M, Stavrinou P, Reuss D, Evans DG, Lefranc F, Sallabanda K, Falini A, et al: EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro Oncol. 22:31–45. 2020.PubMed/NCBI View Article : Google Scholar | |
Cioffi JA, Yue WY, Mendolia-Loffredo S, Hansen KR, Wackym PA and Hansen MR: MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otol Neurotol. 31:1455–1462. 2010.PubMed/NCBI View Article : Google Scholar | |
Saydam O, Senol O, Würdinger T, Mizrak A, Ozdener GB, Stemmer-Rachamimov AO, Yi M, Stephens RM, Krichevsky AM, Saydam N, et al: miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res. 71:852–861. 2011.PubMed/NCBI View Article : Google Scholar | |
Mahajan K and Mahajan NP: ACK1/TNK2 tyrosine kinase: Molecular signaling and evolving role in cancers. Oncogene. 34:4162–4167. 2015.PubMed/NCBI View Article : Google Scholar | |
Li SL, Ma XH, Ji JF, Li H, Liu W, Lu FZ, Wu ST and Zhang Y: miR-1 association with cell proliferation inhibition and apoptosis in vestibular schwannoma by targeting VEGFA. Genet Mol Res. 15(gmr15048923)2016.PubMed/NCBI View Article : Google Scholar | |
Peng CY, Liao YW, Lu MY, Yu CH, Yu CC and Chou MY: Downregulation of miR-1 enhances tumorigenicity and invasiveness in oral squamous cell carcinomas. J Formos Med Assoc. 116:782–789. 2017.PubMed/NCBI View Article : Google Scholar | |
Xu W, Zhang Z, Zou K, Cheng Y, Yang M, Chen H, Wang H, Zhao J, Chen P, He L, et al: MiR-1 suppresses tumor cell proliferation in colorectal cancer by inhibition of Smad3-mediated tumor glycolysis. Cell Death Dis. 8(e2761)2017.PubMed/NCBI View Article : Google Scholar | |
Chen C, Zhou Y, Ding P and He L: miR-1 targeted downregulation of Bcl-2 increases chemosensitivity of lung cancer cells. Genet Test Mol Biomarkers. 25:540–545. 2021.PubMed/NCBI View Article : Google Scholar | |
Yin X, Huo Z, Yan S, Wang Z, Yang T, Wu H and Zhang Z: MiR-205 inhibits sporadic vestibular schwannoma cell proliferation by targeting cyclin-dependent kinase 14. World Neurosurg. 147:e25–e31. 2021.PubMed/NCBI View Article : Google Scholar |