1
|
Bokar JA, Shambaugh ME, Polayes D, Matera
AG and Rottman FM: Purification and cDNA cloning of the
AdoMet-binding subunit of the human mRNA
(N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI
|
2
|
Wei CM and Moss B: Nucleotide sequences at
the N6-methyladenosine sites of HeLa cell messenger ribonucleic
acid. Biochemistry. 16:1672–1676. 1977.PubMed/NCBI View Article : Google Scholar
|
3
|
Dominissini D, Moshitch-Moshkovitz S,
Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K,
Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human
and mouse m6A RNA methylomes revealed by m6A-seq. Nature.
485:201–206. 2012.PubMed/NCBI View Article : Google Scholar
|
4
|
Meyer KD, Saletore Y, Zumbo P, Elemento O,
Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation
reveals enrichment in 3' UTRs and near stop codons. Cell.
149:1635–1646. 2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Wang Y, Li Y, Toth JI, Petroski MD, Zhang
Z and Zhao JC: N6-methyladenosine modification destabilizes
developmental regulators in embryonic stem cells. Nat Cell Biol.
16:191–198. 2014.PubMed/NCBI View
Article : Google Scholar
|
6
|
Zheng G, Dahl JA, Niu Y, Fedorcsak P,
Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5
is a mammalian RNA demethylase that impacts RNA metabolism and
mouse fertility. Mol Cell. 49:18–29. 2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han
D, Fu Y, Parisien M, Dai Q, Jia G, et al:
N6-methyladenosine-dependent regulation of messenger RNA stability.
Nature. 505:117–120. 2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang X, Zhao BS, Roundtree IA, Lu Z, Han
D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine
modulates messenger RNA translation efficiency. Cell.
161:1388–1399. 2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Zhao X, Yang Y, Sun BF, Shi Y, Yang X,
Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, et al: FTO-dependent
demethylation of N6-methyladenosine regulates mRNA splicing and is
required for adipogenesis. Cell Res. 24:1403–1419. 2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Chen T, Hao YJ, Zhang Y, Li MM, Wang M,
Han W, Wu Y, Lv Y, Hao J, Wang L, et al: m(6)A RNA methylation is
regulated by microRNAs and promotes reprogramming to pluripotency.
Cell Stem Cell. 16:289–301. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Liu N, Dai Q, Zheng G, He C, Parisien M
and Pan T: N(6)-methyladenosine-dependent RNA structural switches
regulate RNA-protein interactions. Nature. 518:560–564.
2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Alarcón CR, Lee H, Goodarzi H, Halberg N
and Tavazoie SF: N6-methyladenosine marks primary microRNAs for
processing. Nature. 519:482–485. 2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Geula S, Moshitch-Moshkovitz S,
Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V,
Peer E, Mor N, Manor YS, et al: Stem cells. m6A mRNA methylation
facilitates resolution of naïve pluripotency toward
differentiation. Science. 347:1002–1006. 2015.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR
and Qian SB: Dynamic m(6)A mRNA methylation directs translational
control of heat shock response. Nature. 526:591–594.
2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Meyer KD, Patil DP, Zhou J, Zinoviev A,
Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5' UTR
m(6)A promotes cap-independent translation. Cell. 163:999–1010.
2015.PubMed/NCBI View Article : Google Scholar
|
16
|
Xiang Y, Laurent B, Hsu CH, Nachtergaele
S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S, et al: RNA
m6A methylation regulates the ultraviolet-induced DNA
damage response. Nature. 543:573–576. 2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhao BS, Wang X, Beadell AV, Lu Z, Shi H,
Kuuspalu A, Ho RK and He C: m6A-dependent maternal mRNA
clearance facilitates zebrafish maternal-to-zygotic transition.
Nature. 542:475–478. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M,
Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through
direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun.
7(12626)2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Li A, Chen YS, Ping XL, Yang X, Xiao W,
Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al: Cytoplasmic
m6A reader YTHDF3 promotes mRNA translation. Cell Res.
27:444–447. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu
PJ, Liu C and He C: YTHDF3 facilitates translation and decay of
N6-methyladenosine-modified RNA. Cell Res. 27:315–328.
2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Xiao W, Adhikari S, Dahal U, Chen YS, Hao
YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A
reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519.
2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Roundtree IA, Luo GZ, Zhang Z, Wang X,
Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1
mediates nuclear export of N6-methyladenosine methylated
mRNAs. Elife. 6(e31311)2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Lesbirel S, Viphakone N, Parker M, Parker
J, Heath C, Sudbery I and Wilson SA: The m6A-methylase
complex recruits TREX and regulates mRNA export. Sci Rep.
8(13827)2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Wojtas MN, Pandey RR, Mendel M, Homolka D,
Sachidanandam R and Pillai RS: Regulation of m6A
transcripts by the 3'→5' RNA helicase YTHDC2 is essential for a
successful meiotic program in the mammalian germline. Mol Cell.
68:374–387.e12. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y,
Qi M, Lu Z, Shi H, Wang J, et al: Ythdc2 is an
N6-methyladenosine binding protein that regulates
mammalian spermatogenesis. Cell Res. 27:1115–1127. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Huang H, Weng H, Sun W, Qin X, Shi H, Wu
H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA
N6-methyladenosine by IGF2BP proteins enhances mRNA
stability and translation. Nat Cell Biol. 20:285–295.
2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Liu N, Zhou KI, Parisien M, Dai Q,
Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to
regulate binding of a low-complexity protein. Nucleic Acids Res.
45:6051–6063. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Alarcón CR, Goodarzi H, Lee H, Liu X,
Tavazoie S and Tavazoie SF: HNRNPA2B1 is a mediator of
m(6)A-dependent nuclear RNA Processing events. Cell. 162:1299–1308.
2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Yang D, Qiao J, Wang G, Lan Y, Li G, Guo
X, Xi J, Ye D, Zhu S, Chen W, et al: N6-Methyladenosine
modification of lincRNA 1281 is critically required for mESC
differentiation potential. Nucleic Acids Res. 46:3906–3920.
2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Zheng Y, Nie P, Peng D, He Z, Liu M, Xie
Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional
variants involved in m6A modification. Nucleic Acids Res. 46
(D1):D139–D145. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Hoogendoorn B, Coleman SL, Guy CA, Smith
SK, O'Donovan MC and Buckland PR: Functional analysis of
polymorphisms in the promoter regions of genes on 22q11. Hum Mutat.
24:35–42. 2004.PubMed/NCBI View Article : Google Scholar
|
32
|
He H, Jazdzewski K, Li W, Liyanarachchi S,
Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, et al:
The role of microRNA genes in papillary thyroid carcinoma. Proc
Natl Acad Sci USA. 102:19075–19080. 2005.PubMed/NCBI View Article : Google Scholar
|
33
|
Mishra PJ, Humeniuk R, Mishra PJ,
Longo-Sorbello GS, Banerjee D and Bertino JR: A miR-24 microRNA
binding-site polymorphism in dihydrofolate reductase gene leads to
methotrexate resistance. Proc Natl Acad Sci USA. 104:13513–13518.
2007.PubMed/NCBI View Article : Google Scholar
|
34
|
Kubo M, Hata J, Ninomiya T, Matsuda K,
Yonemoto K, Nakano T, Matsushita T, Yamazaki K, Ohnishi Y, Saito S,
et al: A nonsynonymous SNP in PRKCH (protein kinase C eta)
increases the risk of cerebral infarction. Nat Genet. 39:212–217.
2007.PubMed/NCBI View
Article : Google Scholar
|
35
|
Wenzlau JM, Liu Y, Yu L, Moua O, Fowler
KT, Rangasamy S, Walters J, Eisenbarth GS, Davidson HW and Hutton
JC: A common nonsynonymous single nucleotide polymorphism in the
SLC30A8 gene determines ZnT8 autoantibody specificity in type 1
diabetes. Diabetes. 57:2693–2697. 2008.PubMed/NCBI View Article : Google Scholar
|
36
|
Colacios C, Casemayou A, Dejean AS,
Gaits-Iacovoni F, Pedros C, Bernard I, Lagrange D, Deckert M,
Lamouroux L, Jagodic M, et al: The p.Arg63Trp polymorphism controls
Vav1 functions and Foxp3 regulatory T cell development. J Exp Med.
208:2183–2191. 2011.PubMed/NCBI View Article : Google Scholar
|
37
|
Shen LX, Basilion JP and Stanton VP Jr:
Single-nucleotide polymorphisms can cause different structural
folds of mRNA. Proc Natl Acad USA. 96:7871–7876. 1999.PubMed/NCBI View Article : Google Scholar
|
38
|
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE,
Calcagno AM, Ambudkar SV and Gottesman MM: A ‘silent’ polymorphism
in the MDR1 gene changes substrate specificity. Science.
315:525–528. 2007.PubMed/NCBI View Article : Google Scholar
|
39
|
Komar AA: Genetics. SNPs, silent but not
invisible. Science. 315:466–467. 2007.PubMed/NCBI View Article : Google Scholar
|
40
|
Thi Tran HT, Takeshima Y, Surono A, Yagi
M, Wada H and Matsuo M: A G-to-A transition at the fifth position
of intron-32 of the dystrophin gene inactivates a splice-donor site
both in vivo and in vitro. Mol Genet Metab. 85:213–219.
2005.PubMed/NCBI View Article : Google Scholar
|
41
|
Mo X, Lei S, Zhang Y and Zhang H:
Genome-wide enrichment of m6A-associated
single-nucleotide polymorphisms in the lipid loci. Pharmacogenomics
J. 19:347–357. 2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Mo XB, Zhang YH and Lei SF: Genome-wide
identification of m6A-associated SNPs as potential
functional variants for bone mineral density. Osteoporos Int.
29:2029–2039. 2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Mo XB, Lei SF, Zhang YH and Zhang H:
Examination of the associations between m6A-associated
single-nucleotide polymorphisms and blood pressure. Hypertens Res.
42:1582–1589. 2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Chai T, Tian M, Yang X, Qiu Z, Lin X and
Chen L: Genome-wide identification of RNA modifications for
spontaneous coronary aortic dissection. Front Genet.
12(696562)2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Xuan Z, Zhang Y, Jiang J, Zheng X, Hu X,
Yang X, Shao Y, Zhang G and Huang P: Integrative genomic analysis
of N6-methyladenosine-single nucleotide polymorphisms
(m6A-SNPs) associated with breast cancer. Bioengineered.
12:2389–2397. 2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Zhao H, Jiang J, Wang M and Xuan Z:
Genome-wide identification of m6A-associated single-nucleotide
polymorphisms in colorectal cancer. Pharmgenomics Pers Med.
14:887–892. 2021.PubMed/NCBI View Article : Google Scholar
|
47
|
Chen M, Lin W, Yi J and Zhao Z: Exploring
the epigenetic regulatory role of m6A-associated SNPs in type 2
diabetes pathogenesis. Pharmgenomics Pers Med. 14:1369–1378.
2021.PubMed/NCBI View Article : Google Scholar
|
48
|
Lin W, Xu H, Wu Y, Wang J and Yuan Q: In
silico genome-wide identification of m6A-associated SNPs as
potential functional variants for periodontitis. J Cell Physiol.
235:900–908. 2020.PubMed/NCBI View Article : Google Scholar
|
49
|
Lin W, Xu H, Yuan Q and Zhang S:
Integrative genomic analysis predicts regulatory role of N
6-methyladenosine-associated SNPs for adiposity. Front
Cell Dev Biol. 8(551)2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Zhu R, Tian D, Zhao Y, Zhang C and Liu X:
Genome-wide detection of m6A-associated genetic
polymorphisms associated with ischemic stroke. J Mol Neurosci.
71:2107–2115. 2021.PubMed/NCBI View Article : Google Scholar
|
51
|
Mo XB, Lei SF, Zhang YH and Zhang H:
Detection of m6A-associated SNPs as potential functional
variants for coronary artery disease. Epigenomics. 10:1279–1287.
2018.PubMed/NCBI View Article : Google Scholar
|
52
|
Mo XB, Lei SF, Zhang YH and Zhang H:
Integrative analysis identified IRF6 and NDST1 as potential causal
genes for ischemic stroke. Front Neurol. 10(517)2019.PubMed/NCBI View Article : Google Scholar
|
53
|
Mo XB, Zhang YH and Lei SF: Genome-wide
identification of N6-methyladenosine (m6A)
SNPs associated with rheumatoid arthritis. Front Genet.
9(299)2018.PubMed/NCBI View Article : Google Scholar
|
54
|
Wu Z, Lin W, Yuan Q and Lyu M: A
genome-wide association analysis: m6A-SNP related to the onset of
oral ulcers. Front Immunol. 13(931408)2022.PubMed/NCBI View Article : Google Scholar
|
55
|
Kleinbielen T, Olasagasti F, Azcarate D,
Beristain E, Viguri-Díaz A, Guerra-Merino I, García-Orad Á and de
Pancorbo MM: In silico identification and in vitro expression
analysis of breast cancer-related m6A-SNPs. Epigenetics.
17:2144–2156. 2022.PubMed/NCBI View Article : Google Scholar
|
56
|
Qiu X, He H, Huang Y, Wang J and Xiao Y:
Genome-wide identification of m6A-associated
single-nucleotide polymorphisms in Parkinson's disease. Neurosci
Lett. 737(135315)2020.PubMed/NCBI View Article : Google Scholar
|
57
|
Lv J, Song Q, Bai K, Han J, Yu H, Li K,
Zhuang J, Yang X, Yang H and Lu Q: N6-methyladenosine-related
single-nucleotide polymorphism analyses identify oncogene RNFT2 in
bladder cancer. Cancer Cell Int. 22(301)2022.PubMed/NCBI View Article : Google Scholar
|
58
|
Mo XB, Lei SF, Qian QY, Guo YF, Zhang YH
and Zhang H: Integrative analysis revealed potential causal genetic
and epigenetic factors for multiple sclerosis. J Neurol.
266:2699–2709. 2019.PubMed/NCBI View Article : Google Scholar
|
59
|
Sebastian-delaCruz M,
Olazagoitia-Garmendia A, Gonzalez-Moro I, Santin I,
Garcia-Etxebarria K and Castellanos-Rubio A: Implication of m6A
mRNA methylation in susceptibility to inflammatory bowel disease.
Epigenomes. 4(16)2020.PubMed/NCBI View Article : Google Scholar
|
60
|
Ruan X, Tian M, Kang N, Ma W, Zeng Y,
Zhuang G, Zhang W, Xu G, Hu L, Hou X, et al: Genome-wide
identification of m6A-associated functional SNPs as potential
functional variants for thyroid cancer. Am J Cancer Res.
11:5402–5414. 2021.PubMed/NCBI
|
61
|
Sun X, Dai Y, Tan G, Liu Y and Li N:
Integration analysis of m6A-SNPs and eQTLs associated
with sepsis reveals platelet degranulation and Staphylococcus
aureus infection are mediated by m6A mRNA
methylation. Front Genet. 11(7)2020.PubMed/NCBI View Article : Google Scholar
|
62
|
Liu H, Gu J, Jin Y, Yuan Q, Ma G, Du M, Ge
Y, Qin C, Lv Q, Fu G, et al: Genetic variants in N6-methyladenosine
are associated with bladder cancer risk in the Chinese population.
Arch Toxicol. 95:299–309. 2021.PubMed/NCBI View Article : Google Scholar
|
63
|
Tian J, Ying P, Ke J, Zhu Y, Yang Y, Gong
Y, Zou D, Peng X, Yang N, Wang X, et al: ANKLE1
N6-methyladenosine-related variant is associated with
colorectal cancer risk by maintaining the genomic stability. Int J
Cancer. 146:3281–3293. 2020.PubMed/NCBI View Article : Google Scholar
|
64
|
Olazagoitia-Garmendia A, Zhang L, Mera P,
Godbout JK, Sebastian-DelaCruz M, Garcia-Santisteban I, Mendoza LM,
Huerta A, Irastorza I, Bhagat G, et al: Gluten-induced RNA
methylation changes regulate intestinal inflammation via
allele-specific XPO1 translation in epithelial cells. Gut.
71:68–76. 2022.PubMed/NCBI View Article : Google Scholar
|
65
|
Tian J, Zhu Y, Rao M, Cai Y, Lu Z, Zou D,
Peng X, Ying P, Zhang M, Niu S, et al:
N6-methyladenosine mRNA methylation of PIK3CB regulates
AKT signalling to promote PTEN-deficient pancreatic cancer
progression. Gut. 69:2180–2192. 2020.PubMed/NCBI View Article : Google Scholar
|