Influence of epigenetics and microbiota in early‑life development: A possible role for exosomes (Review)
- Authors:
- Thanasis Mitsis
- Eleni Papakonstantinou
- Konstantina Dragoumani
- George P. Chrousos
- Dimitrios Vlachakis
-
Affiliations: Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece - Published online on: May 13, 2024 https://doi.org/10.3892/ije.2024.22
- Article Number: 3
-
Copyright : © Mitsis et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Richter L, Black M, Britto P, Daelmans B, Desmond C, Devercelli A, Dua T, Fink G, Heymann J, Lombardi J, et al: Early childhood development: An imperative for action and measurement at scale. BMJ Global Health. 4 (Suppl 4)(e001302)2019.PubMed/NCBI View Article : Google Scholar | |
Ferrante G, Fasola S, Cilluffo G, Piacentini G, Viegi G and La Grutta S: Addressing Exposome: An innovative approach to environmental determinants in pediatric respiratory health. Front Public Health. 10(871140)2022.PubMed/NCBI View Article : Google Scholar | |
Fenga C: Gut microbiota modulation: A tailored approach for the prevention of chronic diseases. Biomed Rep. 16(23)2022.PubMed/NCBI View Article : Google Scholar | |
Abeysinghe P, Turner N, Morean Garcia I, Mosaad E, Peiris HN and Mitchell MD: The role of exosomal epigenetic modifiers in cell communication and fertility of dairy cows. Int J Mol Sci. 21(9106)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang B, Zhao J, Jiang M, Peng D, Dou X, Song Y and Shi J: The potential role of gut microbial-derived exosomes in metabolic-associated fatty liver disease: Implications for treatment. Front Immunol. 13(893617)2022.PubMed/NCBI View Article : Google Scholar | |
Galley JD and Besner GE: The therapeutic potential of breast milk-derived extracellular vesicles. Nutrients. 12(745)2020.PubMed/NCBI View Article : Google Scholar | |
Wang DR and Pan J: Extracellular vesicles: Emerged as a promising strategy for regenerative medicine. World J Stem Cells. 15:165–181. 2023.PubMed/NCBI View Article : Google Scholar | |
Doyle LM and Wang MZ: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8(727)2019.PubMed/NCBI View Article : Google Scholar | |
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, et al: Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 9(27)2024.PubMed/NCBI View Article : Google Scholar | |
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F and Rahbarghazi R: Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal. 22(80)2024.PubMed/NCBI View Article : Google Scholar | |
Liu J, Cvirkaite-Krupovic V, Commere PH, Yang Y, Zhou F, Forterre P, Shen Y and Krupovic M: Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. ISME J. 15:2892–2905. 2021.PubMed/NCBI View Article : Google Scholar | |
Sheta M, Taha EA, Lu Y and Eguchi T: Extracellular vesicles: New classification and tumor immunosuppression. Biology (Basel). 12(110)2023.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Bi J, Huang J, Tang Y, Du S and Li P: Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine. 15:6917–6934. 2020.PubMed/NCBI View Article : Google Scholar | |
Duréndez-Sáez E, Calabuig-Fariñas S, Torres-Martínez S, Moreno-Manuel A, Herreros-Pomares A, Escorihuela E, Mosqueda M, Gallach S, Guijarro R, Serna E, et al: Analysis of exosomal cargo provides accurate clinical, histologic and mutational information in non-small cell lung cancer. Cancers (Basel). 14(3216)2022.PubMed/NCBI View Article : Google Scholar | |
Dimik M, Abeysinghe P, Logan J and Mitchell M: The exosome: A review of current therapeutic roles and capabilities in human reproduction. Drug Deliv Transl Res. 13:473–502. 2023.PubMed/NCBI View Article : Google Scholar | |
Dilsiz N: Hallmarks of exosomes. Future Sci OA. 8(FSO764)2022.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X and Yang Q: Advances in therapeutic applications of extracellular vesicles. Int J Nanomedicine. 18:3285–3307. 2023.PubMed/NCBI View Article : Google Scholar | |
Schiller EA, Cohen K, Lin X, El-Khawam R and Hanna N: Extracellular Vesicle-microRNAs as diagnostic biomarkers in preterm neonates. Int J Mol Sci. 24(2622)2023.PubMed/NCBI View Article : Google Scholar | |
Lak NSM, van der Kooi EJ, Enciso-Martinez A, Lozano-Andrés E, Otto C, Wauben MHM and Tytgat GAM: Extracellular vesicles: A new source of biomarkers in pediatric solid tumors? A systematic review. Front Oncol. 12(887210)2022.PubMed/NCBI View Article : Google Scholar | |
Galardi A, Colletti M, Di Paolo V, Vitullo P, Antonetti L, Russo I and Di Giannatale A: Exosomal MiRNAs in pediatric cancers. Int J Mol Sci. 20(4600)2019.PubMed/NCBI View Article : Google Scholar | |
Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, Singh H and Bhandari V: Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther. 9(173)2018.PubMed/NCBI View Article : Google Scholar | |
Braun RK, Chetty C, Balasubramaniam V, Centanni R, Haraldsdottir K, Hematti P and Eldridge MW: Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia. Biochem Biophys Res Commun. 503:2653–2658. 2018.PubMed/NCBI View Article : Google Scholar | |
Cavalli G and Heard E: Advances in epigenetics link genetics to the environment and disease. Nature. 571:489–499. 2019.PubMed/NCBI View Article : Google Scholar | |
Bertogliat MJ, Morris-Blanco KC and Vemuganti R: Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int. 133(104642)2020.PubMed/NCBI View Article : Google Scholar | |
Liang M: Epigenetic mechanisms and hypertension. Hypertension. 72:1244–1254. 2018.PubMed/NCBI View Article : Google Scholar | |
Nasrullah Hussain A, Ahmed S, Rasool M and Shah AJ: DNA methylation across the tree of life, from micro to macro-organism. Bioengineered. 13:1666–1685. 2022.PubMed/NCBI View Article : Google Scholar | |
Shi J, Xu J, Chen YE, Li JS, Cui Y, Shen L, Li JJ and Li W: The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nat Commun. 12(5285)2021.PubMed/NCBI View Article : Google Scholar | |
Uddin MG and Fandy TE: DNA methylation inhibitors: Retrospective and perspective view. Adv Cancer Res. 152:205–223. 2021.PubMed/NCBI View Article : Google Scholar | |
Sallustio F, Gesualdo L and Gallone A: New findings showing how DNA methylation influences diseases. World J Biol Chem. 10:1–6. 2019.PubMed/NCBI View Article : Google Scholar | |
Tompkins JD: Discovering DNA methylation, the history and future of the writing on DNA. J Hist Biol. 55:865–887. 2022.PubMed/NCBI View Article : Google Scholar | |
Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F, Hii CS, Prescott SL, Ferrante A, Renz H, et al: Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol. 14(39)2018.PubMed/NCBI View Article : Google Scholar | |
Lee HT, Oh S, Ro DH, Yoo H and Kwon YW: The Key Role of DNA Methylation and histone acetylation in epigenetics of atherosclerosis. J Lipid Atheroscler. 9:419–434. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J and Zhang H: Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (2020). 4(e292)2023.PubMed/NCBI View Article : Google Scholar | |
Zhang SF, Gao J and Liu CM: The role of non-coding RNAs in neurodevelopmental disorders. Front Genet. 10(1033)2019.PubMed/NCBI View Article : Google Scholar | |
Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N and Hahne JC: MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol. 15:261–278. 2020.PubMed/NCBI View Article : Google Scholar | |
Jorge AL, Pereira ER, Oliveira CS, Ferreira EDS, Menon ETN, Diniz SN and Pezuk JA: MicroRNAs: Understanding their role in gene expression and cancer. Einstein (Sao Paulo). 19(eRB5996)2021.PubMed/NCBI View Article : Google Scholar | |
Borkiewicz L, Kalafut J, Dudziak K, Przybyszewska-Podstawka A and Telejko I: Decoding LncRNAs. Cancers (Basel). 13(2643)2021.PubMed/NCBI View Article : Google Scholar | |
Li S, Ye Z, Mather KA, Nguyen TL, Dite GS, Armstrong NJ, Wong EM, Thalamuthu A, Giles GG, Craig JM, et al: Early life affects late-life health through determining DNA methylation across the lifespan: A twin study. EBioMedicine. 77(103927)2022.PubMed/NCBI View Article : Google Scholar | |
Schrott R, Song A and Ladd-Acosta C: Epigenetics as a biomarker for early-life environmental exposure. Curr Environ Health Rep. 9:604–624. 2022.PubMed/NCBI View Article : Google Scholar | |
Xu Q, Jiang M, Gu S, Wang F and Yuan B: Early life stress induced DNA methylation of monoamine oxidases leads to depressive-like behavior. Front Cell Dev Biol. 8(582247)2020.PubMed/NCBI View Article : Google Scholar | |
Park J, Lee K, Kim K and Yi SJ: The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct Target Ther. 7(217)2022.PubMed/NCBI View Article : Google Scholar | |
Guan L, Shi X, Tang Y, Yan Y, Chen L, Chen Y, Gao G, Lin C and Chen A: Contribution of amygdala histone acetylation in early life stress-induced visceral hypersensitivity and emotional comorbidity. Front Neurosci. 16(843396)2022.PubMed/NCBI View Article : Google Scholar | |
Allen L and Dwivedi Y: MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry. 25:308–320. 2020.PubMed/NCBI View Article : Google Scholar | |
Tsagakis I, Douka K, Birds I and Aspden JL: Long non-coding RNAs in development and disease: Conservation to mechanisms. J Pathol. 250:480–495. 2020.PubMed/NCBI View Article : Google Scholar | |
Rom A, Melamed L, Gil N, Goldrich MJ, Kadir R, Golan M, Biton I, Perry RB and Ulitsky I: Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat Commun. 10(5092)2019.PubMed/NCBI View Article : Google Scholar | |
Caldwell KK, Hafez A, Solomon E, Cunningham M and Allan AM: Arsenic exposure during embryonic development alters the expression of the long noncoding RNA growth arrest specific-5 (Gas5) in a sex-dependent manner. Neurotoxicol Teratol. 66:102–112. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhou Z, Chen J, Huang Y, Liu D, Chen S and Qin S: Long Noncoding RNA GAS5: A new factor involved in bone diseases. Front Cell Dev Biol. 9(807419)2022.PubMed/NCBI View Article : Google Scholar | |
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J and Chen ZS: Microbiota in health and diseases. Signal Transduct Target Ther. 7(135)2022.PubMed/NCBI View Article : Google Scholar | |
Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV and Aadil RM: Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol. 13(999001)2022.PubMed/NCBI View Article : Google Scholar | |
Peng X, Cheng L, You Y, Tang C, Ren B, Li Y, Xu X and Zhou X: Oral microbiota in human systematic diseases. Int J Oral Sci. 14(14)2022.PubMed/NCBI View Article : Google Scholar | |
Skowron K, Bauza-Kaszewska J, Kraszewska Z, Wiktorczyk-Kapischke N, Grudlewska-Buda K, Kwiecińska-Piróg J, Wałecka-Zacharska E, Radtke L and Gospodarek-Komkowska E: Human skin microbiome: Impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms. 9(543)2021.PubMed/NCBI View Article : Google Scholar | |
Man WH, de Steenhuijsen Piters WA and Bogaert D: The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat Rev Microbiol. 15:259–270. 2017.PubMed/NCBI View Article : Google Scholar | |
Cocomazzi G, De Stefani S, Del Pup L, Palini S, Buccheri M, Primiterra M, Sciannamè N, Faioli R, Maglione A, Baldini GM, et al: The impact of the female genital microbiota on the outcome of assisted reproduction treatments. Microorganisms. 11(1443)2023.PubMed/NCBI View Article : Google Scholar | |
Al Bander Z, Nitert MD, Mousa A and Naderpoor N: The gut microbiota and inflammation: An overview. Int J Environ Res Public Health. 17(7618)2020.PubMed/NCBI View Article : Google Scholar | |
Ferraris C, Elli M and Tagliabue A: Gut microbiota for health: How can diet maintain a healthy Gut Microbiota? Nutrients. 12(3596)2020.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Zhou J and Wang L: Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 11(625913)2021.PubMed/NCBI View Article : Google Scholar | |
Russo M, Calevo MG, D'Alessandro G, Tantari M, Migliorati M, Piccardo I, Perucchin PP and Arioni C: Influence of maternal oral microbiome on newborn oral microbiome in healthy pregnancies. Ital J Pediatr. 49(140)2023.PubMed/NCBI View Article : Google Scholar | |
Dhariwala MO and Scharschmidt TC: Baby's skin bacteria: First impressions are long-lasting. Trends Immunol. 42:1088–1099. 2021.PubMed/NCBI View Article : Google Scholar | |
Jašarević E, Hill EM, Kane PJ, Rutt L, Gyles T, Folts L, Rock KD, Howard CD, Morrison KE, Ravel J and Bale TL: The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nat Commun. 12(6289)2021.PubMed/NCBI View Article : Google Scholar | |
Zhuang L, Chen H, Zhang S, Zhuang J, Li Q and Feng Z: Intestinal microbiota in early life and its implications on childhood health. Genomics Proteomics Bioinformatics. 17:13–25. 2019.PubMed/NCBI View Article : Google Scholar | |
Niu J, Xu L, Qian Y, Sun Z, Yu D, Huang J, Zhou X, Wang Y, Zhang T, Ren R, et al: Evolution of the gut microbiome in early childhood: A cross-sectional study of Chinese children. Front Microbiol. 11(439)2020.PubMed/NCBI View Article : Google Scholar | |
Sarkar A, Yoo JY, Valeria Ozorio Dutra S, Morgan KH and Groer M: The Association between early-life gut microbiota and long-term health and diseases. J Clin Med. 10(459)2021.PubMed/NCBI View Article : Google Scholar | |
Coley EJL, Mayer EA, Osadchiy V, Chen Z, Subramanyam V, Zhang Y, Hsiao EY, Gao K, Bhatt R, Dong T, et al: Early life adversity predicts brain-gut alterations associated with increased stress and mood. Neurobiol Stress. 15(100348)2021.PubMed/NCBI View Article : Google Scholar | |
Erabi H, Okada G, Shibasaki C, Setoyama D, Kang D, Takamura M, Yoshino A, Fuchikami M, Kurata A, Kato TA, et al: Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis. Sci Rep. 10(16822)2020.PubMed/NCBI View Article : Google Scholar | |
Li B, Guo K, Zeng L, Zeng B, Huo R, Luo Y, Wang H, Dong M, Zheng P, Zhou C, et al: Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers. Transl Psychiatry. 8(34)2018.PubMed/NCBI View Article : Google Scholar | |
Behr C, Kamp H, Fabian E, Krennrich G, Mellert W, Peter E, Strauss V, Walk T, Rietjens IMCM and van Ravenzwaay B: Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats. Arch Toxicol. 91:3439–3454. 2017.PubMed/NCBI View Article : Google Scholar | |
Padmasekar M, Savai R, Seeger W and Pullamsetti SS: Exposomes to exosomes: Exosomes as tools to study epigenetic adaptive mechanisms in high-altitude humans. Int J Environ Res Public Health. 18(8280)2021.PubMed/NCBI View Article : Google Scholar | |
Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC and Rüther U: Inactivation of the Fto gene protects from obesity. Nature. 458:894–898. 2009.PubMed/NCBI View Article : Google Scholar | |
Sachse G, Church C, Stewart M, Cater H, Teboul L, Cox RD and Ashcroft FM: FTO demethylase activity is essential for normal bone growth and bone mineralization in mice. Biochim Biophys Acta Mol Basis Dis. 1864:843–850. 2018.PubMed/NCBI View Article : Google Scholar | |
Melnik BC and Schmitz G: Milk's role as an epigenetic regulator in health and disease. Diseases. 5(12)2017.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Lin TV, Yuan Q, Sadoul R, Lam TT and Bordey A: Small extracellular vesicles control dendritic spine development through regulation of HDAC2 signaling. J Neurosci. 41:3799–3807. 2021.PubMed/NCBI View Article : Google Scholar | |
Schwarzenbach H and Gahan PB: MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA. 5(28)2019.PubMed/NCBI View Article : Google Scholar | |
Shirazi S, Huang CC, Kang M, Lu Y, Ravindran S and Cooper LF: The importance of cellular and exosomal miRNAs in mesenchymal stem cell osteoblastic differentiation. Sci Rep. 11(5953)2021.PubMed/NCBI View Article : Google Scholar | |
Li C, Zhou T, Chen J, Li R, Chen H, Luo S, Chen D, Cai C and Li W: The role of Exosomal miRNAs in cancer. J Transl Med. 20(6)2022.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhang M and Zhou F: Biological functions and clinical applications of exosomal long non-coding RNAs in cancer. J Cell Mol Med. 24:11656–11666. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Yan Y, Peng J, Thakur A, Bai N, Yang K and Xu Z: Decoding roles of exosomal lncRNAs in tumor-immune regulation and therapeutic potential. Cancers (Basel). 15(286)2022.PubMed/NCBI View Article : Google Scholar | |
Yang Q, Diamond MP and Al-Hendy A: Early life adverse environmental exposures increase the risk of uterine fibroid development: role of epigenetic regulation. Front Pharmacol. 7(40)2016.PubMed/NCBI View Article : Google Scholar | |
Díez-Sainz E, Milagro FI, Riezu-Boj JI and Lorente-Cebrián S: Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet. J Physiol Biochem. 78:485–499. 2022.PubMed/NCBI View Article : Google Scholar | |
Liang X, Dai N, Sheng K, Lu H, Wang J, Chen L and Wang Y: Gut bacterial extracellular vesicles: Important players in regulating intestinal microenvironment. Gut Microbes. 14(2134689)2022.PubMed/NCBI View Article : Google Scholar | |
Macia L, Nanan R, Hosseini-Beheshti E and Grau GE: Host- and Microbiota-derived extracellular vesicles, immune function, and disease development. Int J Mol Sci. 21(107)2019.PubMed/NCBI View Article : Google Scholar | |
Martínez-Ruiz S, Sáez-Fuertes L, Casanova-Crespo S, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Badia J and Baldoma L: Microbiota-Derived extracellular vesicles promote immunity and intestinal maturation in suckling rats. Nutrients. 15(4701)2023.PubMed/NCBI View Article : Google Scholar | |
Liu H, Zhang Q, Wang S, Weng W, Jing Y and Su J: Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioact Mater. 14:169–181. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu JH, Chen CY, Liu ZZ, Luo ZW, Rao SS, Jin L, Wan TF, Yue T, Tan YJ, Yin H, et al: Extracellular vesicles from child gut microbiota enter into bone to preserve bone mass and strength. Adv Sci (Weinh). 8(2004831)2021.PubMed/NCBI View Article : Google Scholar | |
Kaisanlahti A, Turunen J, Byts N, Samoylenko A, Bart G, Virtanen N, Tejesvi MV, Zhyvolozhnyi A, Sarfraz S and Kumpula S: , et al: Maternal microbiota communicates with the fetus through microbiota-derived extracellular vesicles. Microbiome. 11(249)2023.PubMed/NCBI View Article : Google Scholar | |
Du X, Ley R and Buck AH: MicroRNAs and extracellular vesicles in the gut: New host modulators of the microbiome? Microlife. 2(uqab010)2021.PubMed/NCBI View Article : Google Scholar | |
Feng X, Chen X, Zheng X, Zhu H, Qi Q, Liu S, Zhang H and Che J: Latest trend of milk derived exosomes: Cargos, functions, and applications. Front Nutr. 8(747294)2021.PubMed/NCBI View Article : Google Scholar | |
Lyons KE, Ryan CA, Dempsey EM, Ross RP and Stanton C: Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients. 12(1039)2020.PubMed/NCBI View Article : Google Scholar | |
Duale A, Singh P and Al Khodor S: Breast milk: A meal worth having. Front Nutr. 8(800927)2022.PubMed/NCBI View Article : Google Scholar | |
Yi DY and Kim SY: Human breast milk composition and function in human health: From nutritional components to microbiome and MicroRNAs. Nutrients. 13(3094)2021.PubMed/NCBI View Article : Google Scholar | |
Banić M, Butorac K, Čuljak N, Leboš Pavunc A, Novak J, Bellich B, Kazazić S, Kazazić S, Cescutti P, Šušković J, et al: The human milk microbiota produces potential therapeutic biomolecules and shapes the intestinal microbiota of infants. Int J Mol Sci. 23(14382)2022.PubMed/NCBI View Article : Google Scholar | |
Notarbartolo V, Giuffrè M, Montante C, Corsello G and Carta M: Composition of human breast milk microbiota and its role in children's health. Pediatr Gastroenterol Hepatol Nutr. 25:194–210. 2022.PubMed/NCBI View Article : Google Scholar | |
Kim KU, Kim WH, Jeong CH, Yi DY and Min H: More than Nutrition: Therapeutic potential of breast milk-derived exosomes in cancer. Int J Mol Sci. 21(7327)2020.PubMed/NCBI View Article : Google Scholar | |
Shah J, Sims B and Martin C: Therapeutic potential of human breast milk derived exosomes. J Nanopart Res. 24(260)2022. | |
Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A and Gabrielsson S: Exosomes with immune modulatory features are present in human breast milk1. J Immunol. 179:1969–1978. 2007.PubMed/NCBI View Article : Google Scholar | |
de la Torre Gomez C, Goreham RV, Bech Serra JJ, Nann T and Kussmann M: ‘Exosomics’-A review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Front Genet. 9(92)2018.PubMed/NCBI View Article : Google Scholar | |
Mirza AH, Kaur S, Nielsen LB, Størling J, Yarani R, Roursgaard M, Mathiesen ER, Damm P, Svare J, Mortensen HB and Pociot F: Breast milk-derived extracellular vesicles enriched in exosomes from mothers with type 1 diabetes contain aberrant levels of microRNAs. Front Immunol. 10(2543)2019.PubMed/NCBI View Article : Google Scholar | |
Kim KU, Han K, Kim J, Kwon DH, Ji YW, Yi DY and Min H: The protective role of exosome-derived MicroRNAs and proteins from human breast milk against infectious agents. Metabolites. 13(635)2023.PubMed/NCBI View Article : Google Scholar | |
Chiurazzi M, Cozzolino M, Reinelt T, Nguyen TD, Elke Chie S, Natalucci G and Miletta MC: Human milk and brain development in infants. Reprod Med. 2:107–117. 2021. | |
Guo MM, Zhang K and Zhang JH: Human breast milk-derived exosomal miR-148a-3p protects against necrotizing enterocolitis by regulating p53 and Sirtuin 1. Inflammation. 45:1254–1268. 2022.PubMed/NCBI View Article : Google Scholar | |
Gialeli G, Panagopoulou O, Liosis G and Siahanidou T: Potential epigenetic effects of human milk on infants' neurodevelopment. Nutrients. 15(3614)2023.PubMed/NCBI View Article : Google Scholar | |
Cintio M, Polacchini G, Scarsella E, Montanari T, Stefanon B and Colitti M: MicroRNA Milk Exosomes: From cellular regulator to genomic marker. Animals (Basel). 10(1126)2020.PubMed/NCBI View Article : Google Scholar | |
Melnik BC, Stremmel W, Weiskirchen R, John SM and Schmitz G: Exosome-Derived MicroRNAs of human milk and their effects on infant health and development. Biomolecules. 11(851)2021.PubMed/NCBI View Article : Google Scholar | |
Zhou F, Paz HA, Sadri M, Cui J, Kachman SD, Fernando SC and Zempleni J: Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am J Physiol Gastrointest Liver Physiol. 317:G618–G624. 2019.PubMed/NCBI View Article : Google Scholar | |
Turunen J, Tejesvi MV, Suokas M, Virtanen N, Paalanne N, Kaisanlahti A, Reunanen J and Tapiainen T: Bacterial extracellular vesicles in the microbiome of first-pass meconium in newborn infants. Pediatr Res. 93:887–896. 2023.PubMed/NCBI View Article : Google Scholar | |
Holzhausen EA, Kupsco A, Chalifour BN, Patterson WB, Schmidt KA, Mokhtari P, Baccarelli AA, Goran MI and Alderete TL: Influence of technical and maternal-infant factors on the measurement and expression of extracellular miRNA in human milk. Front Immunol. 14(1151870)2023.PubMed/NCBI View Article : Google Scholar | |
Shah KB, Chernausek SD, Garman LD, Pezant NP, Plows JF, Kharoud HK, Demerath EW and Fields DA: Human milk exosomal MicroRNA: Associations with maternal overweight/obesity and infant body composition at 1 month of life. Nutrients. 13(1091)2021.PubMed/NCBI View Article : Google Scholar |