WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells: Augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates
- Authors:
- Published online on: January 1, 2007 https://doi.org/10.3892/ijmm.19.1.197
- Pages: 197-201
Metrics: Total
Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Abstract
Notch and WNT signaling pathways are key components of the stem cell signaling network. Canonical WNT signaling to intestinal progenitor cells leads to transcriptional activation of the JAG1 gene, encoding Serrate-type Notch ligand. JAG1 then binds to the Notch receptor on adjacent stem cells to induce Notch receptor proteolyses for the release of Notch intracellular domain (NICD). NICD is associated with CSL/RBPSUH and Mastermind (MAML1, MAML2, or MAML3) to activate Notch target genes, such as HES1 and HES5. Although WNT-dependent Notch signaling activation in intestinal stem cells is clarified, the effects of Notch signaling activation on WNT signaling in progenitor cells remain unclear. We searched for Notch-response element (NRE) in the promoter region of genes encoding secreted WNT signaling inhibitors, including DKK1, DKK2, DKK3, DKK4, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5 and WIF1. Double NREs were identified within human DKK2 promoter by bioinformatics and human intelligence (Humint). The human DKK2 gene was characterized as Notch signaling target in intestinal stem cells. Because DKK2 is a key player in the stem cell signaling network, the DKK2 gene at human chromosome 4q25 is a candidate tumor suppressor gene inactivated due to epigenetic silencing and/or deletion. The chimpanzee DKK2 gene was identified within the NW_105990.1 genome sequence, while the cow Dkk2 gene was identified within the AC156664.2 and AC158038.2 genome sequences. Chimpanzee DKK2 and cow Dkk2 showed 98.5% and 95.8% total-amino-acid identity with human DKK2, respectively. Double NREs in human DKK2 promoter were conserved in chimpanzee DKK2 promoter, partially in rat Dkk2 promoter, but not in cow and mouse Dkk2 promoters. The Notch-DKK2 signaling loop, created or potentiated in primates, was complementary to WNT-DKK1 and BMP-IHH-SFRP1 signaling loops for negative regulation of canonical WNT signaling pathway. Together, these facts indicate that DKK2 promoter evolution resulted in the augmentation of a WNT negative regulation system in primates.