Alzheimer's disease: An update of the roles of receptors, astrocytes and primary cilia (Review)
- Authors:
- Ubaldo Armato
- Balu Chakravarthy
- Raffaella Pacchiana
- James F. Whitfield
-
Affiliations: Histology and Embryology Section, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy, National Research Council of Canada, Ottawa, Ontario, Canada - Published online on: October 24, 2012 https://doi.org/10.3892/ijmm.2012.1162
- Pages: 3-10
This article is mentioned in:
Abstract
Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 4:110–133. 2008. | |
Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, van Belle G, Jolley L and Larson EB: Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol. 59:1737–1746. 2002. View Article : Google Scholar : PubMed/NCBI | |
Querfurth HW and LaFerla FM: Alzheimer’s disease. N Engl J Med. 362:329–344. 2010. | |
Selkoe DJ, Mandelkow E and Holtzman DM: The Biology of Alzheimer Disease. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 2012 | |
Choy RW, Cheng Z and Schekman R: Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci USA. 109:E2077–E2082. 2012.PubMed/NCBI | |
LaFerla FM, Green KN and Oddo S: Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 8:499–509. 2007. | |
Li S, Shankar GM and Selkoe DJ: How do soluble oligomers of amyloid beta-protein impair hippocampal synaptic plasticity? Front Cell Neurosci. 4:52010.PubMed/NCBI | |
Siegenthaler BM and Rajendran L: Retromers in Alzheimer’s disease. Neurodegener Dis. 10:116–121. 2012. | |
Whitfield JF: The road to LOAD (late-onset Alzheimer’s disease) and possible ways to block it. Expert Opin Ther Targets. 11:1257–1260. 2007. | |
Dal Prà I, Chiarini A, Pacchiana R, Chakravarthy B, Whitfield JF and Armato U: Emerging concepts of how β-amyloid proteins and pro-inflammatory cytokines might collaborate to produce an ‘Alzheimer brain’ (Review). Mol Med Rep. 1:173–178. 2008. | |
Hartlage-Rübsamen M, Morawski M, Waniek A, Jäger C, Zeitschel U, Koch B, Cynis H, Schilling S, Schliebs R, Demuth HU and Rossner S: Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathol. 121:705–719. 2011.PubMed/NCBI | |
Jawhar S, Wirth O and Bayer TA: Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J Biol Chem. 286:38825–38832. 2011. | |
Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B, Hatami A, Rönicke R, Reymann K, Hutter-Paier B, Alexandru A, Jagla W, Graubner S, Glabe CG, Demuth HU and Bloom GS: Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature. 485:651–655. 2012.PubMed/NCBI | |
Prusiner SB: Cell biology. A unifying role for prions in neurodegenerative diseases. Science. 336:1511–1513. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB and Giles K: Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc Natl Acad Sci USA. 109:11025–11030. 2012. | |
Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE and Gilchrest BA: Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J Clin Invest. 100:2333–2340. 1997. | |
Yaar M, Zhai S, Fine RE, Eisenhauer PB, Arbie BL, Stewart KB and Gilchrest BA: Amyloid-β binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J Biol Chem. 277:7720–7725. 2001. | |
Kuner P, Schubenel R and Hertel C: β-amyloid binds to p75NTR and activates NF-kappaB in human neuroblastoma cells. J Neurosci Res. 54:798–804. 1998. | |
Perini G, Della-Bianca V, Politi V, Della Valle G, Dal Prà I, Rossi F and Armato U: Role of p75 neurotrophin receptor in the neurotoxicity by β-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med. 195:907–918. 2002. | |
Chiarini A, Dal Prà I, Whitfield JF and Armato U: The killing of neurons by beta-amyloid peptides, prions and pro-inflammatory cytokines. Ital J Anat Embryol. 111:221–246. 2006.PubMed/NCBI | |
Della-Bianca V, Rossi F, Armato U, Dal Prà I, Costantini C, Perini G, Politi V and Della Valle G: Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106-126). J Biol Chem. 276:38929–38933. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sotthibundhu A, Li QX, Thangnipon W and Coulson EJ: Abeta(1–42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiol Aging. 30:1975–1985. 2009. | |
Bai M, Trivedi S and Brown EM: Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem. 273:23605–23610. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chakravarthy B, Gaudet C, Ménard M, Atkinson T, Brown L, Laferla FM, Armato U and Whitfield J: Amyloid-beta peptides stimulate the expression of the p75(NTR) neurotrophin receptor in SHSY5Y human neuroblastoma cells and AD transgenic mice. J Alzheimers Dis. 19:915–925. 2010.PubMed/NCBI | |
Ito S, Ménard M, Atkinson T, Gaudet C, Brown L, Whitfield J and Chakravarthy B: Involvement of insulin-like growth factor 1 receptor signaling in the amyloid-β peptide oligomers-induced p75 neurotrophin receptor protein expression in mouse hippocampus. J Alzheimers Dis. 31:493–506. 2012. | |
Mufson EJ, Ma SY, Dills J, Cochran EJ, Leurgans S, Wuu J, Bennett DA, Jaffar S, Gilmor ML, Levey AI and Kordower JH: Loss of basal forebrain P75 (NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol. 443:136–153. 2002.PubMed/NCBI | |
Chakravarthy B, Gaudet C, Ménard M, Atkinson T, Chiarini A, Dal Prà I and Whitfield J: The p75 neurotrophin receptor is localized to primary cilia in adult mouse hippocampal dentate gyrus granule cells. Biochem Biophys Res Commun. 401:458–462. 2010. View Article : Google Scholar : PubMed/NCBI | |
Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL and Lu B: Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci. 8:1069–1077. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bernabeu RO and Longo FM: The p75 neurotrophin receptor is expressed by adult mouse dentate progenitor cells and regulates neuronal and non-neuronal cell genesis. BMC Neurosci. 11:1362010. View Article : Google Scholar : PubMed/NCBI | |
Chakravarthy B, Ménard M, Ito S, Gaudet C, Dal Prà I, Armato U and Whitfield J: Hippocampal membrane-associated p75NTR levels are increased in Alzheimer’s disease. J Alzheimers Dis. 30:675–684. 2012.PubMed/NCBI | |
Brown EM and MacLeod RJ: Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 81:239–297. 2001.PubMed/NCBI | |
Msaouel P, Nixon AM, Bramos AP, Baiba E and Kentarchos NE: Extracellular calcium-sensing receptor: an overview of physiology, pathophysiology and clinical perspectives. In Vivo. 18:739–753. 2004.PubMed/NCBI | |
Jensen AA and Bräuner-Osborne H: Allosteric modulation of the calcium-sensing receptor. Curr Neuropharmacol. 5:180–186. 2007. View Article : Google Scholar : PubMed/NCBI | |
Magno AL, Ward BK and Ratajczak T: The calcium-sensing receptor: a molecular perspective. Endocr Rev. 32:3–30. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hofer AM and Brown EM: Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 4:530–538. 2003. View Article : Google Scholar | |
Pidasheva S, Grant M, Canaff L, Ercan O, Kumar U and Hendy GN: Calcium-sensing receptor dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of CaSR mutants retained intracellularly. Hum Mol Genet. 15:2200–2209. 2006. View Article : Google Scholar | |
Chang W and Shoback D: Extracellular Ca2+-sensing receptors-an overview. Cell Calcium. 35:183–196. 2004. | |
Ye C, Ho-Pao CL, Kanazirska M, Quinn S, Rogers K, Seidman CE, Seidman JG, Brown EM and Vassilev PM: Amyloid-beta proteins activate Ca(2+)-permeable channels through calcium-sensing receptors. J Neurosci Res. 47:547–554. 1997. | |
Chiarini A, Dal Prà I, Marconi M, Chakravarthy B, Whitfield JF and Armato U: Calcium-sensing receptor (CaSR) in human brain’s pathophysiology: roles in late-onset Alzheimer’s disease (LOAD). Curr Pharm Biotechnol. 10:317–326. 2009. | |
Conley YP, Mukherjee A, Kammerer C, DeKosky ST, Kamboh MI, Finegold DN and Ferrel RE: Evidence supporting a role for the calcium-sensing receptor in Alzheimer disease. Am J Med Genet B Neuropsychiatr Genet. 150B:703–709. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dal Prà I, Chiarini A, Nemeth EF, Armato U and Whitfield JF: Roles of Ca2+ and the Ca2+-sensing receptor (CaSR) in the expression of inducible NOS (nitric oxide synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokine-stimulated adult human astrocytes. J Cell Biochem. 96:428–438. 2005. | |
Chiarini A, Dal Prà I, Gottardo R, Bortolotti F, Whitfield JF and Armato U: The BH4 (tetrahydrobiopterin)-dependent activation, but not the expression, of inducible NOS (nitric oxide synthase)-2 in proinflammatory cytokine-stimulated, cultured normal human astrocytes is mediated by MEK-ERK kinases. J Cell Biochem. 94:731–743. 2005. | |
Chiarini A, Dal Prà I, Menapace L, Pacchiana R, Whitfield JF and Armato U: Soluble amyloid β-peptide and myelin basic protein strongly stimulate, alone and in synergism with combined proinflammatory cytokines, the expression of functional nitric oxide synthase-2 in normal adult human astrocytes. Int J Mol Med. 16:801–807. 2005. | |
Chiarini A, Armato U, Pacchiana R and Dal Prà I: Proteomic analysis of GTP cyclohydrolase 1 multiprotein complexes in cultured normal adult human astrocytes under both basal and cytokine-activated conditions. Proteomics. 9:1850–1860. 2009. View Article : Google Scholar | |
Chiarini A, Whitfield J, Bonafini C, Chakravarthy B, Armato U and Dal Prà I: Amyloid-β(25–35), an amyloid-β(1–42) surrogate, and proinflammatory cytokines stimulate VEGF-A secretion by cultured, early passage, normoxic adult human cerebral astrocytes. J Alzheimers Dis. 21:915–926. 2010. | |
Dal Prà I, Whitfileld JF, Pacchiana R, Bonafini C, Talacchi A, Chakravarthy B, Armato U and Chiarini A: The amyloid-β42 proxy, amyloid-β25–35, induces normal human cerebral astrocytes to produce amyloid-β42. J Alzheimers Dis. 24:335–347. 2011. | |
Nedergaard M, Ransom B and Goldman SA: New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26:523–530. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nagele RG and Wegiel J, Venkataraman V, Imaki H, Wang KC and Wegiel J: Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging. 25:663–674. 2004. | |
Nedergaard M and Verkhratsky A: Artefact versus reality-how astrocytes contribute to synaptic events. Glia. 60:1013–1023. 2012. View Article : Google Scholar : PubMed/NCBI | |
Theodosis DT, Poulain DA and Oliet SH: Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev. 88:983–1008. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guenette SY: Astrocytes: a cellular player in Abeta clearance and degradation. Trends Mol Med. 9:279–280. 2003. View Article : Google Scholar : PubMed/NCBI | |
Biron KE, Dickstein DL, Gopaul R and Jefferies WA: Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 6:e237892011.PubMed/NCBI | |
Pogue AI and Lukiw WJ: Angiogenic signaling in Alzheimer’s disease. Neuroreport. 15:1507–1510. 2004. | |
Zand L, Ryu JK and McLarnon JG: Induction of angiogenesis in the beta-amyloid peptide-injected rat hippocampus. Neuroreport. 16:129–132. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bell RD and Zlokovic BV: Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropatol. 118:103–113. 2008. | |
Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL and Gallagher M: Reduction of hippocampal hyperactivity improves cognition in anamnestic mild cognitive impairment. Neuron. 74:467–474. 2012. View Article : Google Scholar : PubMed/NCBI | |
Putcha D, Brickhouse M, O’Keefe K, Sullivan C, Rentz D, Marshall G, Dickerson B and Sperling R: Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J Neurosci. 31:17680–17688. 2011.PubMed/NCBI | |
Sperling R: Potential of functional MRI as a biomarker in early Alzheimer’s disease. Neurobiol Aging. 32(Suppl 1): S37–S43. 2011. | |
Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M and Stark CE: High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with anamnestic mild cognitive impairment. Neuroimage. 51:1242–1252. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jantaratnotai N, Ryu JK, Schwab C, McGeer PL and McLarnon JG: Comparison of vascular perturbations in an Aβ-injected animal model and in AD brain. Int J Alzheimers Dis. 2011:9182802011.PubMed/NCBI | |
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ and Hyman BT: Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature. 451:720–724. 2008.PubMed/NCBI | |
Altman J and Das GD: Postnatal neurogenesis in the guinea-pig. Nature. 214:1098–1101. 1967. View Article : Google Scholar : PubMed/NCBI | |
Nottebohm F: Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res. 189:429–436. 1980. View Article : Google Scholar : PubMed/NCBI | |
Kempermann G: Adult Neurogenesis. 2. Oxford University Press; New York: 2011 | |
Einstein EB, Patterson CA, Hon BJ, Regan KA, Reddi J, Melnikoff DE, Mateer MJ, Schulz S, Johnson BN and Tallent MK: Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci. 30:4306–4314. 2010. View Article : Google Scholar : PubMed/NCBI | |
Burgos-Ramos E, Hervás-Aguilar A, Aguado-Liera D, Puebla-Jiménez L, Hernández-Pinto AM, Barrios V and Arilla-Ferreiro E: Somatostatin and Alzheimer’s disease. Mol Cell Endocrinol. 286:104–111. 2008. | |
Händel M, Schultz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G and Höllt V: Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience. 89:909–926. 1999.PubMed/NCBI | |
Stanić D, Malmgren H, He H, Scott L, Aperia A and Hökfelt T: Developmental changes in frequency of the ciliary somatostatin receptor 3 protein. Brain Res. 1249:101–112. 2009.PubMed/NCBI | |
Berbari NF, Johnson AD, Lewis JS, Askwith CC and Mykytyn K: Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol Biol Cell. 19:1540–1547. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goetz SC, Ocbina PJ and Anderson KV: The primary cilium as a hedgehog signal transduction machine. Methods Cell Biol. 94:199–222. 2009. View Article : Google Scholar : PubMed/NCBI | |
Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY and Reiter JF: Vertebrate smoothened functions at the primary cilium. Nature. 437:1018–1021. 2005. View Article : Google Scholar : PubMed/NCBI | |
Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S and Alvarez-Buylla A: Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci. 11:277–284. 2008. View Article : Google Scholar : PubMed/NCBI | |
Amador-Arjona A, Elliott J, Miller A, Ginbey A, Pazour GJ, Enikolopov G, Roberts AJ and Terskikh AV: Primary cilia regulate proliferation of amplifying progenitors in adult hippocampus: implications for learning and memory. J Neurosci. 31:9933–9944. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schaeffer EL, Novaes BA, Da Silva ER, Skaf HD and Mendes-Neto AG: Strategies to promote differentiation of newborn neurons into mature functional cells in Alzheimer brain. Prog Neuropsychopharmacol Biol Psychiatry. 33:1087–1102. 2009. View Article : Google Scholar : PubMed/NCBI | |
van Tijn P, Kamphuis W, Marlatt MW, Hol EM and Lucassen PJ: Presenilin mouse and zebrafish models for dementia: focus on neurogenesis. Prog Neurobiol. 93:149–164. 2011.PubMed/NCBI | |
Waldau B and Shetty AK: Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci. 65:2372–2384. 2008. View Article : Google Scholar : PubMed/NCBI | |
Armato U, Chakravarthy B, Chiarini A, Dal Prà I and Whitfield JF: Is Alzheimer’s disease at least partly a ciliopathy? J Alzheimers Dis. 1:101e2011. View Article : Google Scholar | |
Gaudet C, Ménard M, Brown L, Atkinson T, LaFerla FM, Ito S, Armato U, Dal Prà I, Whitfield J and Chakravarthy B: Reduction of the immunostainable length of the hippocampal dentate granule cells’ primary cilia in 3xAD-transgenic mice producing human Aβ1–42 and tau. Biochem Biophys Res Commun. September 17–2012.(Epub ahead of print). | |
Rodríguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM, Oddo S and Verkhratsky A: Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One. 3:e29352008.PubMed/NCBI | |
Avila J, Insausti R and Del Rio J: Memory and neurogenesis in aging and Alzheimer’s disease. Aging Dis. 1:30–36. 2010. | |
Shetty AK: Reelin signaling, hippocampal neurogenesis and efficacy of aspirin intake and stem cell transplantation in aging and Alzheimer’s disease. Aging Dis. 1:2–11. 2010.PubMed/NCBI | |
Whitfield JF, Chakravarthy B, Chiarini A and Dal Prà I: The primary cilium: The tiny driver of dentate gyral neurogenesis. Neurogenesis Research. Clark GJ and Anderson WT: Chapter V. Nova Science Publishers Inc; Hauppauge, NY: pp. 137–159. 2012, (In press). ISBN: 9781620817230 | |
Fortress AM, Buhusi M, Helke KL and Granholm AC: Cholinergic degeneration and alterations in the TrkA and p75NTR balance as a result of pro-NGF injection into aged rats. J Aging Res. 2011:4605432011. View Article : Google Scholar : PubMed/NCBI | |
Armato U, Chakravarthy B, Chiarini A, Dal Prà I and Whitfield JF: A Paradigm-changing surprise from dentate gyrus granule cells-cilium-localized p75NTR may drive their progenitor cell proliferation. J Alzheimers Dis. 1:e1042011. View Article : Google Scholar | |
Pérez-González R, Antequera D, Vargas T, Spuch C, Bolos M and Carro E: Leptin induces the proliferation of neuronal progenitors and neuroprotection in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 24:17–25. 2011.PubMed/NCBI | |
Armato U, Chakravarthy B, Chiarini A, Chioffi F, Dal Prà I and Whitfield JF: Leptin, sonic hedgehogs and neurogenesis-a primary cilium’s tale. J Alzheimers Dis. 1:e1052012. View Article : Google Scholar | |
Bianca VD, Dusi S, Bianchini E, Dal Prà I and Rossi F: Beta-amyloid activates the O2-forming NADPH oxidase in microglia, monocytes and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem. 274:15493–15499. 1999.PubMed/NCBI | |
Armato U, Bonafini C, Chakravarthy B, Pacchiana R, Chiarini A, Whitfield JF and Dal Prà I: The calcium-sensing receptor: A novel Alzheimer’s disease crucial target? J Neurol Sci. July 27–2012.(Epub ahead of print). View Article : Google Scholar |