New strategies for the treatment of lysosomal storage diseases (Review)
- Authors:
- Giancarlo Parenti
- Claudio Pignata
- Pietro Vajro
- Mariacarolina Salerno
-
Affiliations: Department of Pediatrics, Federico II University, Naples, Italy - Published online on: November 19, 2012 https://doi.org/10.3892/ijmm.2012.1187
- Pages: 11-20
This article is mentioned in:
Abstract
Futerman AH and van Meer G: The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 5:554–565. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fuller M, Meikle PJ and Hopwood JJ: Epidemiology of lysosomal storage diseases: an overview. Fabry Disease: Perspectives from 5 years of FOS. Mehta A, Beck M and Sunder-Plassmann G: Oxford PharmaGenesis; Oxford: 2006, PubMed/NCBI | |
Beck M: New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy. Hum Genet. 121:1–22. 2007. View Article : Google Scholar : PubMed/NCBI | |
Beutler E: Lysosomal storage diseases: natural history and ethical and economic aspects. Mol Genet Metab. 88:208–215. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ballabio A and Gieselmann V: Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta. 1793:684–696. 2009. View Article : Google Scholar : PubMed/NCBI | |
Prasad VK and Kurtzberg J: Transplant outcomes in mucopolysaccharidoses. Semin Hematol. 47:59–69. 2010. View Article : Google Scholar : PubMed/NCBI | |
Valayannopoulos V and Wijburg FA: Therapy for the mucopolysaccharidoses. Rheumatology (Oxford). 50(Suppl 5): v49–v59. 2011. View Article : Google Scholar | |
Orchard PJ, Blazar BR, Wagner J, Charnas L, Krivit W and Tolar J: Hematopoietic cell therapy for metabolic disease. J Pediatr. 151:340–346. 2007. View Article : Google Scholar : PubMed/NCBI | |
de Ru MH, Boelens JJ, Das AM, Jones SA, van der Lee JH, Mahlaoui N, Mengel E, Offringa M, O’Meara A, Parini R, Rovelli A, Sykora KW, Valayannopoulos V, Vellodi A, Wynn RF and Wijburg FA: Enzyme replacement therapy and/or hematopoietic stem cell transplantation at diagnosis in patients with mucopolysaccharidosis type I: results of a European consensus procedure. Orphanet J Rare Dis. 6:552011. | |
Orchard PJ and Tolar J: Transplant outcomes in leukodystrophies. Semin Hematol. 47:70–78. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sly WS: Receptor-mediated transport of acid hydrolases to lysosomes. Curr Top Cell Regul. 26:27–38. 1985. View Article : Google Scholar : PubMed/NCBI | |
Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, Mankin HJ, Murray GJ, Parker RI, Argoff CE, et al: Replacement therapy for inherited enzyme deficiency - macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med. 324:1464–1470. 1991.PubMed/NCBI | |
Barton NW, Furbish FS, Murray GJ, Garfield M and Brady RO: Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc Natl Acad Sci USA. 87:1913–1916. 1990. View Article : Google Scholar : PubMed/NCBI | |
Mehta A, Beck M, Elliott P, Giugliani R, Linhart A, Sunder-Plassmann G, Schiffmann R, Barbey F, Ries M and Clarke JT; Fabry Outcome Survey investigators. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: an analysis of registry data. Lancet. 374:1986–1996. 2009. | |
Lidove O, West ML, Pintos-Morell G, Reisin R, Nicholls K, Figuera LE, Parini R, Carvalho LR, Kampmann C, Pastores GM and Mehta A: Effects of enzyme replacement therapy in Fabry disease - a comprehensive review of the medical literature. Genet Med. 12:668–679. 2010. View Article : Google Scholar : PubMed/NCBI | |
Feriozzi S, Torras J, Cybulla M, Nicholls K, Sunder-Plassmann G and West M; FOS Investigators. The effectiveness of long-term agalsidase alfa therapy in the treatment of Fabry nephropathy. Clin J Am Soc Nephrol. 7:60–69. 2012. View Article : Google Scholar : PubMed/NCBI | |
van der Ploeg AT and Reuser AJ: Pompe’s disease. Lancet. 372:1342–1353. 2008. | |
Strothotte S, Strigl-Pill N, Grunert B, Kornblum C, Eger K, Wessig C, Deschauer M, Breunig F, Glocker FX, Vielhaber S, Brejova A, Hilz M, Reiners K, Müller-Felber W, Mengel E, Spranger M and Schoser B: Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J Neurol. 257:91–97. 2010. View Article : Google Scholar | |
van der Ploeg AT, Clemens PR, Corzo D, Escolar DM, Florence J, Groeneveld GJ, Herson S, Kishnani PS, Laforet P, Lake SL, Lange DJ, Leshner RT, Mayhew JE, Morgan C, Nozaki K, Park DJ, Pestronk A, Rosenbloom B, Skrinar A, van Capelle CI, van der Beek NA, Wasserstein M and Zivkovic SA: A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med. 362:1396–1406. 2010. | |
Parenti G and Andria G: Pompe disease: from new views on pathophysiology to innovative therapeutic strategies. Curr Pharm Biotechnol. 12:902–915. 2011. View Article : Google Scholar : PubMed/NCBI | |
Anson DS, McIntyre C and Byers S: Therapies for neurological disease in the mucopolysaccharidoses. Curr Gene Ther. 11:132–143. 2011. View Article : Google Scholar : PubMed/NCBI | |
Begley DJ, Pontikis CC and Scarpa M: Lysosomal storage diseases and the blood-brain barrier. Curr Pharm Des. 14:1566–1580. 2008. View Article : Google Scholar : PubMed/NCBI | |
Grubb JH, Vogler C, Levy B, Galvin N, Tan Y and Sly WS: Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA. 105:2616–2621. 2008. View Article : Google Scholar | |
Osborn MJ, McElmurry RT, Peacock B, Tolar J and Blazar BR: Targeting of the CNS in MPS-IH using a nonviral transferrin-alpha-L-iduronidase fusion gene product. Mol Ther. 16:1459–1466. 2008. View Article : Google Scholar : PubMed/NCBI | |
Munoz-Rojas MV, Vieira T, Costa R, Fagondes S, John A, Jardim LB, Vedolin LM, Raymundo M, Dickson PI, Kakkis E and Giugliani R: Intrathecal enzyme replacement therapy in a patient with mucopolysaccharidosis type I and symptomatic spinal cord compression. Am J Med Genet A. 146A:2538–2544. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Jiang JL, Gumlaw NK, Zhang J, Bercury SD, Ziegler RJ, Lee K, Kudo M, Canfield WM, Edmunds T, Jiang C, Mattaliano RJ and Cheng SH: Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther. 17:954–963. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Muñoz ET, Solorio-Meza SE, Amato D, Duran G, Giona F, Heitner R, Rosenbaum H, Giraldo P, Mehta A, Park G, Phillips M, Elstein D, Altarescu G, Szleifer M, Hashmueli S and Aviezer D: Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood. 118:5767–5773. 2011. View Article : Google Scholar | |
Parenti G: Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med. 1:268–279. 2009. View Article : Google Scholar : PubMed/NCBI | |
Valenzano KJ, Khanna R, Powe AC, Boyd R, Lee G, Flanagan JJ and Benjamin ER: Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol. 9:213–235. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fan JQ, Ishii S, Asano N and Suzuki Y: Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med. 5:112–115. 1999. View Article : Google Scholar : PubMed/NCBI | |
Germain DP and Fan JQ: Pharmacological chaperone therapy by active-site-specific chaperones in Fabry disease: in vitro and preclinical studies. Int J Clin Pharmacol Ther. 47(Suppl 1): S111–S117. 2009.PubMed/NCBI | |
Sawkar AR, Adamski-Werner SL, Cheng WC, Wong CH, Beutler E, Zimmer KP and Kelly JW: Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles. Chem Biol. 12:1235–1244. 2005. View Article : Google Scholar : PubMed/NCBI | |
Parenti G, Zuppaldi A, Gabriela Pittis M, Rosaria Tuzzi M, Annunziata I, Meroni G, Porto C, Donaudy F, Rossi B, Rossi M, Filocamo M, Donati A, Bembi B, Ballabio A and Andria G: Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease. Mol Ther. 15:508–514. 2007. View Article : Google Scholar : PubMed/NCBI | |
Okumiya T, Kroos MA, Vliet LV, Takeuchi H, Van der Ploeg AT and Reuser AJ: Chemical chaperones improve transport and enhance stability of mutant alpha-glucosidases in glycogen storage disease type II. Mol Genet Metab. 90:49–57. 2007. View Article : Google Scholar : PubMed/NCBI | |
Suzuki Y, Ichinomiya S, Kurosawa M, Matsuda J, Ogawa S, Iida M, Kubo T, Tabe M, Itoh M, Higaki K, Nanba E and Ohno K: Therapeutic chaperone effect of N-octyl 4-epi-β-valienamine on murine G(M1)-gangliosidosis. Mol Genet Metab. 106:92–98. 2012. | |
Flanagan JJ, Rossi B, Tang K, Wu X, Mascioli K, Donaudy F, Tuzzi MR, Fontana F, Cubellis MV, Porto C, Benjamin E, Lockhart DJ, Valenzano KJ, Andria G, Parenti G and Do HV: The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum Mutat. 30:1683–1692. 2009. View Article : Google Scholar : PubMed/NCBI | |
Porto C, Ferrara MC, Meli M, Acampora E, Avolio V, Rosa M, Cobucci-Ponzano B, Colombo G, Moracci M, Andria G and Parenti G: Pharmacological enhancement of alpha-glucosidase by the allosteric chaperone N-acetylcysteine. Mol Ther. Sep 18–2012.(Epub ahead of print). View Article : Google Scholar | |
Urban DJ, Zheng W, Goker-Alpan O, Jadhav A, Lamarca ME, Inglese J, Sidransky E and Austin CP: Optimization and validation of two miniaturized glucocerebrosidase enzyme assays for high throughput screening. Comb Chem High Throughput Screen. 11:817–824. 2008. View Article : Google Scholar : PubMed/NCBI | |
Marugan JJ, Zheng W, Motabar O, Southall N, Goldin E, Sidransky E, Aungst RA, Liu K, Sadhukhan SK and Austin CP: Evaluation of 2-thioxo-2,3,5,6,7,8-hexahydropyrimido(4,5-d)pyrimidin-4(1H)-one analogues as GAA activators. Eur J Med Chem. 45:1880–1897. 2010. View Article : Google Scholar : PubMed/NCBI | |
Porto C, Cardone M, Fontana F, Rossi B, Tuzzi MR, Tarallo A, Barone MV, Andria G and Parenti G: The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol Ther. 17:964–971. 2009. View Article : Google Scholar : PubMed/NCBI | |
Porto C, Pisani A, Rosa M, Acampora E, Avolio V, Tuzzi MR, Visciano B, Gagliardo C, Materazzi S, la Marca G, Andria G and Parenti G: Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease. J Inherit Metab Dis. 35:513–520. 2012. View Article : Google Scholar | |
Benjamin ER, Khanna R, Schilling A, Flanagan JJ, Pellegrino LJ, Brignol N, Lun Y, Guillen D, Ranes BE, Frascella M, Soska R, Feng J, Dungan L, Young B, Lockhart DJ and Valenzano KJ: Co-administration with the pharmacological chaperone AT1001 increases recombinant human α-galactosidase A tissue uptake and improves substrate reduction in Fabry mice. Mol Ther. 20:717–726. 2012.PubMed/NCBI | |
Khanna R, Flanagan JJ, Feng J, Soska R, Frascella M, Pellegrino LJ, Lun Y, Guillen D, Lockhart DJ and Valenzano KJ: The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of pompe disease. PLoS One. 7:e407762012.PubMed/NCBI | |
Mu TW, Ong DS, Wang YJ, Balch WE, Yates JR III, Segatori L and Kelly JW: Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell. 134:769–781. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sands MS and Davidson BL: Gene therapy for lysosomal storage diseases. Mol Ther. 13:839–849. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cardone M: Prospects for gene therapy in inherited neurodegenerative diseases. Curr Opin Neurol. 20:15–18. 2007. View Article : Google Scholar | |
Spampanato C, De Leonibus E, Dama P, Gargiulo A, Fraldi A, Sorrentino NC, Russo F, Nusco E, Auricchio A, Surace EM and Ballabio A: Efficacy of a combined intracerebral and systemic gene delivery approach for the treatment of a severe lysosomal storage disorder. Mol Ther. 19:860–869. 2011. View Article : Google Scholar : PubMed/NCBI | |
Platt FM and Jeyakumar M: Substrate reduction therapy. Acta Paediatr (Suppl). 97:88–93. 2008. View Article : Google Scholar | |
Schiffmann R: Therapeutic approaches for neuronopathic lysosomal storage disorders. J Inherit Metab Dis. 33:373–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Giraldo P, Alfonso P, Atutxa K, Fernández-Galán MA, Barez A, Franco R, Alonso D, Martin A, Latre P and Pocovi M: Real-world clinical experience with long-term miglustat maintenance therapy in type 1 Gaucher disease: the ZAGAL project. Haematologica. 94:1771–1775. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hollak CE, Hughes D, van Schaik IN, Schwierin B and Bembi B: Miglustat (Zavesca) in type 1 Gaucher disease: 5-year results of a post-authorisation safety surveillance programme. Pharmacoepidemiol Drug Saf. 18:770–777. 2009.PubMed/NCBI | |
Lukina E, Watman N, Arreguin EA, Dragosky M, Iastrebner M, Rosenbaum H, Phillips M, Pastores GM, Kamath RS, Rosenthal DI, Kaper M, Singh T, Puga AC and Peterschmitt MJ: Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: 2-year results of a phase 2 study. Blood. 116:4095–4098. 2010.PubMed/NCBI | |
Lachmann RH, te Vruchte D, Lloyd-Evans E, Reinkensmeier G, Sillence DJ, Fernandez-Guillen L, Dwek RA, Butters TD, Cox TM and Platt FM: Treatment with miglustat reverses the lipid-trafficking defect in Niemann-Pick disease type C. Neurobiol Dis. 16:654–658. 2004. View Article : Google Scholar : PubMed/NCBI | |
Patterson MC, Vecchio D, Prady H, Abel L and Wraith JE: Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 6:765–772. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wraith JE, Vecchio D, Jacklin E, Abel L, Chadha-Boreham H, Luzy C, Giorgino R and Patterson MC: Miglustat in adult and juvenile patients with Niemann-Pick disease type C: long-term data from a clinical trial. Mol Genet Metab. 99:351–357. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fecarotta S, Amitrano M, Romano A, Della Casa R, Bruschini D, Astarita L, Parenti G and Andria G: The videofluoroscopic swallowing study shows a sustained improvement of dysphagia in children with Niemann-Pick disease type C after therapy with miglustat. Am J Med Genet A. 155A:540–547. 2011. View Article : Google Scholar | |
Piotrowska E, Jakóbkiewicz-Banecka J, Barańska S, Tylki-Szymańska A, Czartoryska B, Wegrzyn A and Wegrzyn G: Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur J Hum Genet. 14:846–852. 2006. View Article : Google Scholar | |
Roberts AL, Thomas BJ, Wilkinson AS, Fletcher JM and Byers S: Inhibition of glycosaminoglycan synthesis using rhodamine B in a mouse model of mucopolysaccharidosis type IIIA. Pediatr Res. 60:309–314. 2006. View Article : Google Scholar : PubMed/NCBI | |
Roberts AL, Fletcher JM, Moore L and Byers S: Trans-generational exposure to low levels of rhodamine B does not adversely affect litter size or liver function in murine mucopolysaccharidosis type IIIA. Mol Genet Metab. 101:208–213. 2010. View Article : Google Scholar | |
Malinowska M, Wilkinson FL, Langford-Smith KJ, Langford-Smith A, Brown JR, Crawford BE, Vanier MT, Grynkiewicz G, Wynn RF, Wraith JE, Wegrzyn G and Bigger BW: Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS One. 5:e141922010. View Article : Google Scholar : PubMed/NCBI | |
Piotrowska E, Jakobkiewicz-Banecka J, Maryniak A, Tylki-Szymanska A, Puk E, Liberek A, Wegrzyn A, Czartoryska B, Slominska-Wojewodzka M and Wegrzyn G: Two-year follow-up of Sanfilippo disease patients treated with a genistein-rich isoflavone extract: assessment of effects on cognitive functions and general status of patients. Med Sci Monit. 17:196–202. 2011.PubMed/NCBI | |
Ashe KM, Bangari D, Li L, Cabrera-Salazar MA, Bercury SD, Nietupski JB, Cooper CG, Aerts JM, Lee ER, Copeland DP, Cheng SH, Scheule RK and Marshall J: Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease. PLoS One. 6:e217582011. View Article : Google Scholar : PubMed/NCBI | |
Marshall J, Ashe KM, Bangari D, McEachern K, Chuang WL, Pacheco J, Copeland DP, Desnick RJ, Shayman JA, Scheule RK and Cheng SH: Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease. PLoS One. 5:e150332010. View Article : Google Scholar : PubMed/NCBI | |
Douillard-Guilloux G, Raben N, Takikita S, Batista L, Caillaud C and Richard E: Modulation of glycogen synthesis by RNA interference: towards a new therapeutic approach for glycogenosis type II. Hum Mol Genet. 17:3876–3886. 2008. View Article : Google Scholar : PubMed/NCBI | |
Douillard-Guilloux G, Raben N, Takikita S, Ferry A, Vignaud A, Guillet-Deniau I, Favier M, Thurberg BL, Roach PJ, Caillaud C and Richard E: Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease. Hum Mol Genet. 19:684–696. 2010. View Article : Google Scholar : PubMed/NCBI | |
Raben N, Schreiner C, Baum R, Takikita S, Xu S, Xie T, Myerowitz R, Komatsu M, Van der Meulen JH, Nagaraju K, Ralston E and Plotz PH: Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder - murine Pompe disease. Autophagy. 6:1078–1089. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jones AM and Helm JM: Emerging treatments in cystic fibrosis. Drugs. 69:1903–1910. 2009. View Article : Google Scholar | |
Nelson SF, Crosbie RH, Miceli MC and Spencer MJ: Emerging genetic therapies to treat Duchenne muscular dystrophy. Curr Opin Neurol. 22:532–538. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sermet-Gaudelus I, De Boeck K, Casimir GJ, Vermeulen F, Leal T, Mogenet A, Roussel D, Fritsch J, Hanssens L, Hirawat S, Miller NL, Constantine S, Reha A, Ajayi T, Elfring GL and Miller LL: Ataluren (PTC124) induces CFTR protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 182:1262–1272. 2010. View Article : Google Scholar : PubMed/NCBI | |
Finkel RS: Read-through strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 25:1158–1164. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sarkar C, Zhang Z and Mukherjee AB: Stop codon read-through with PTC124 induces palmitoyl-protein thioesterase-1 activity, reduces thioester load and suppresses apoptosis in cultured cells from INCL patients. Mol Genet Metab. 104:338–345. 2011. View Article : Google Scholar | |
Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, Puri C, Pignata A, Martina JA, Sardiello M, Palmieri M, Polishchuk R, Puertollano R and Ballabio A: Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell. 21:421–430. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E and Ballabio A: A gene network regulating lysosomal biogenesis and function. Science. 325:473–477. 2009.PubMed/NCBI |