1
|
L’homme R, Brouwers E, Al-Maharik N,
Lapcík O, Hampl R, Mikola H, Wähälä K and Adlercreutz H:
Time-resolved fluoroimmunoassay of plasma and urine
O-desmethylangolensin. J Steroid Biochem Mol Biol.
81:353–361. 2002.
|
2
|
Heinonen S, Wähälä K and Adlercreutz H:
Identification of isoflavone metabolites dihydrodaidzein,
dihydrogenistein, 6’-OH-O-dma, and cis-4-OH-equol in
human urine by gas chromatography-mass spectroscopy using authentic
reference compounds. Anal Biochem. 274:211–219. 1999.PubMed/NCBI
|
3
|
Hwang J, Wang J, Morazzoni P, Hodis HN and
Sevanian A: The phytoestrogen equol increases nitric oxide
availability by inhibiting superoxide production: an antioxidant
mechanism for cell-mediated LDL modification. Free Radic Biol Med.
34:1271–1282. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Turner R, Baron T, Wolffram S, Minihane
AM, Cassidy A, Rimbach G and Weinberg PD: Effect of circulating
forms of soy isoflavones on the oxidation of low density
lipoprotein. Free Radic Res. 38:209–216. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rüfer CE and Kulling SE: Antioxidant
activity of isoflavones and their major metabolites using different
in vitro assays. J Agric Food Chem. 54:2926–2931. 2006.PubMed/NCBI
|
6
|
Choi EJ and Kim GH: Daidzein causes cell
cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7
and MDA-MB-453 cells. Phytomedicine. 15:683–690. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jin S, Zhang QY, Kang XM, Wang JX and Zhao
WH: Daidzein induces MCF-7 breast cancer cell apoptosis via the
mitochondrial pathway. Ann Oncol. 21:263–268. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Green JM, Alvero AB, Kohen F and Mor G:
7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine:
a novel compound capable of inducing cell death in epithelial
ovarian cancer stem cells. Cancer Biol Ther. 8:1747–1753. 2009.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Gercel-Taylor C, Feitelson AK and Taylor
DD: Inhibitory effect of genistein and daidzein on ovarian cancer
cell growth. Anticancer Res. 24:795–800. 2004.PubMed/NCBI
|
10
|
Rabiau N, Kossaï M, Braud M, Chalabi N,
Satih S, Bignon YJ and Bernard-Gallon DJ: Genistein and daidzein
act on a panel of genes implicated in cell cycle and angiogenesis
by polymerase chain reaction arrays in human prostate cancer cell
lines. Cancer Epidemiol. 34:200–206. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Su SJ, Chow NH, Kung ML, Hung TC and Chang
KL: Effects of soy isoflavones on apoptosis induction and G2-M
arrest in human hepatoma cells involvement of caspase-3 activation,
Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutr
Cancer. 45:113–123. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Borradaile NM, de Dreu LE, Wilcox LJ,
Edwards JY and Huff MW: Soya phytoestrogens, genistein and
daidzein, decrease apolipoprotein B secretion from HepG2 cells
through multiple mechanisms. Biochem J. 366:531–539. 2002.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Jiang Q, Payton-Stewart F, Elliott S,
Driver J, Rhodes LV, Zhang Q, Zheng S, Bhatnagar D, Boue SM,
Collins-Burow BM, Sridhar J, Stevens C, McLachlan JA, Wiese TE,
Burow ME and Wang G: Effects of 7-O substitutions on estrogenic and
anti-estrogenic activities of daidzein analogues in MCF-7 breast
cancer cells. J Med Chem. 53:6153–6163. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Singh-Gupta V, Zhang H, Yunker CK, Ahmad
Z, Zwier D, Sarkar FH and Hillman GG: Daidzein effect on hormone
refractory prostate cancer in vitro and in vivo compared to
genistein and soy extract: potentiation of radiotherapy. Pharm Res.
27:1115–1127. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Guo JM, Xiao BX, Dai DJ, Liu Q and Ma HH:
Effects of daidzein on estrogen-receptor-positive and -negative
pancreatic cancer cells in vitro. World J Gastroenterol.
10:860–863. 2004.PubMed/NCBI
|
16
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
18
|
Schmitt E, Dekant W and Stopper H:
Assaying the estrogenicity of phytoestrogens in cells of different
estrogen sensitive tissues. Toxicol In Vitro. 15:433–439. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Guo JM, Xiao BX, Liu DH, Grant M, Zhang S,
Lai YF, Guo YB and Liu Q: Biphasic effect of daidzein on cell
growth of human colon cancer cells. Food Chem Toxicol.
42:1641–1646. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Magee PJ and Rowland IR: Phyto-oestrogens,
their mechanism of action: current evidence for a role in breast
and prostate cancer. Br J Nutr. 91:513–531. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gogel WC and Tietz JD: Absence of
compensation and reasoning-like processes in the perception of
orientation in depth. Percept Psychophys. 51:309–318. 1992.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Bingham SA, Atkinson C, Liggins J, Bluck L
and Coward A: Phyto-oestrogens: where are we now? Br J Nutr.
79:393–406. 1998. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tang BY and Adams NR: Effect of equol on
oestrogen receptors and on synthesis of DNA and protein in the
immature rat uterus. J Endocrinol. 85:291–297. 1980. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shutt DA and Cox RI: Steroid and
phyto-oestrogen binding to sheep uterine receptors in vitro. J
Endocrinol. 52:299–310. 1972. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pfitscher A, Reiter E and Jungbauer A:
Receptor binding and transactivation activities of red clover
isoflavones and their metabolites. J Steroid Biochem Mol Biol.
112:87–94. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shackelford RE, Kaufmann WK and Paules RS:
Oxidative stress and cell cycle checkpoint function. Free Radic
Biol Med. 28:1387–1404. 2000.PubMed/NCBI
|
27
|
Hunter T and Cooper JA: Protein-tyrosine
kinases. Annu Rev Biochem. 54:897–930. 1985. View Article : Google Scholar
|
28
|
Collins I and Garrett MD: Targeting the
cell division cycle in cancer: CDK and cell cycle checkpoint kinase
inhibitors. Curr Opin Pharmacol. 5:366–373. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sandhu C and Slingerland J: Deregulation
of the cell cycle in cancer. Cancer Detect Prev. 24:107–118.
2000.PubMed/NCBI
|
30
|
Chi TY, Chen GG and Lai PB:
Eicosapentaenoic acid induces Fas-mediated apoptosis through a
p53-dependent pathway in hepatoma cells. Cancer J. 10:190–200.
2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Murakami Y, Hayashi K, Hirohashi S and
Sekiya T: Aberrations of the tumor suppressor p53 and
retinoblastoma genes in human hepatocellular carcinomas. Cancer
Res. 51:5520–5525. 1991.PubMed/NCBI
|
32
|
Oakes SA, Lin SS and Bassik MC: The
control of endoplasmic reticulum-initiated apoptosis by the BCL-2
family of proteins. Curr Mol Med. 6:99–109. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
van Delft MF and Huang DC: How the Bcl-2
family of proteins interact to regulate apoptosis. Cell Res.
16:203–213. 2006.PubMed/NCBI
|
34
|
Alonso V, Pérez-Martínez FC, Calahorra FJ
and Esbrit P: Phytoestrogen modulation of bone-related cytokines
and its impact on cell viability in human prostate cancer cells.
Life Sci. 85:421–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Alhasan SA, Ensley JF and Sarkar FH:
Genistein induced molecular changes in a squamous cell carcinoma of
the head and neck cell line. Int J Oncol. 16:333–338.
2000.PubMed/NCBI
|
36
|
Jiang X and Wang X: Cytochrome C-mediated
apoptosis. Annu Rev Biochem. 73:87–106. 2004. View Article : Google Scholar
|
37
|
Porter AG and Jänicke RU: Emerging roles
of caspase-3 in apoptosis. Cell Death Differ. 6:99–104. 1999.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Abu-Qare AW and Abou-Donia MB: Biomarkers
of apoptosis: release of cytochrome c, activation of caspase-3,
induction of 8-hydroxy-2’-deoxyguanosine, increased
3-nitrotyrosine, and alteration of p53 gene. J Toxicol Environ
Health B Crit Rev. 4:313–332. 2004.PubMed/NCBI
|