1
|
Goodarzi MO, Dumesic DA, Chazenbalk G and
Azziz R: Polycystic ovary syndrome: etiology, pathogenesis and
diagnosis. Nat Rew Endocrinol. 7:219–231. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hart R, Hickey M and Franks S:
Definitions, prevalence and symptoms of polycystic ovaries and
polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol.
18:671–683. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pasquali R, Stener-Victorin E, Yildiz BO,
Duleba AJ, Hoeger K, Mason H, Homburg R, Hickey T, Franks S,
Tapanainen JS, et al: PCOS Forum: research in polycystic ovary
syndrome today and tomorrow. Clin Endocrinol (Oxf). 74:424–433.
2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dumesic DA, Abbott DH and Padmanabhan V:
Polycystic ovary syndrome and its developmental origins. Rev Endocr
Metab Disord. 8:127–141. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hourvitz A, Kuwahara A, Hennebold JD,
Tavares AB, Negishi H, Lee TH, Erickson GF and Adashi EY: The
regulated expression of the pregnancy-associated plasma protein-A
in the rodent ovary: a proposed role in the development of dominant
follicles and of corpora lutea. Endocrinology. 143:1833–1844. 2002.
View Article : Google Scholar
|
6
|
Teixeira Filho FL, Baracat EC, Lee TH, Suh
CS, Matsui M, Chang RJ, Shimasaki S and Erickson GF: Aberrant
expression of growth differentiation factor-9 in oocytes of women
with polycystic ovary syndrome. J Clin Endocrinol Metab.
87:1337–1344. 2002.PubMed/NCBI
|
7
|
Munir I, Yen HW, Baruth T, Tarkowki R,
Azziz R, Magoffin DA and Jakimiuk AJ: Resistin stimulation of
17alpha-hydroxylase activity in ovarian theca cells in vitro:
relevance to polycystic ovary syndrome. J Clin Endocrinol Metab.
90:4852–4857. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wickenheisser JK, Nelson-Degrave VL and
McAllister JM: Dysregulation of cytochrome P450 17alpha-hydroxylase
messenger ribonucleic acid stability in theca cells isolated from
women with polycystic ovary syndrome. J Clin Endocrinol Metab.
90:1720–1727. 2005. View Article : Google Scholar
|
9
|
Goodarzi MO, Jones MR, Chen YD and Azziz
R: First evidence of genetic association between AKT2 and
polycystic ovary syndrome. Diabetes Care. 31:2284–2287. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim JJ, Choi YM, Hong MA, Hwang SS, Yoon
SH, Chae SJ, Jee BC, Ku SY, Kim JG and Moon SY:
Phosphatidylinositol 3-kinase p85alpha regulatory subunit gene
Met326Ile polymorphism in women with polycystic ovary syndrome. Hum
Reprod. 24:1184–1190. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gu BH and Baek KH: Pro12Ala and His447His
polymorphisms of PPAR-gamma are associated with polycystic ovary
syndrome. Reprod Biomed Online. 18:644–650. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Choi SW, Gu BH, Ramakrishna S, Park JM and
Baek KH: Association between a single nucleotide polymorphism in
MTHFR gene and polycystic ovary syndrome. Eur J Obstet Gynecol
Reprod Biol. 145:85–88. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fortune JE: Ovarian follicular growth and
development in mammals. Biol Reprod. 50:225–232. 1994. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chiu PC, Koistinen R, Koistinen H, Seppala
M, Lee KF and Yeung WS: Zona-binding inhibitory factor-1 from human
follicular fluid is an isoform of glycodelin. Biol Reprod.
69:365–372. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Coy P, Gadea J, Romar R, Matas C and
Garcia E: Effect of in vitro fertilization medium on the acrosome
reaction, cortical reaction, zona pellucida hardening and in vitro
development in pigs. Reproduction. 124:279–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yao Y, Ho P and Yeung WS: Effects of human
follicular fluid on the capacitation and motility of human
spermatozoa. Fertil Steril. 73:680–686. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang TH, Chang CL, Wu HM, Chiu YM, Chen CK
and Wang HS: Insulin-like growth factor-II (IGF-II), IGF-binding
protein-3 (IGFBP-3), and IGFBP-4 in follicular fluid are associated
with oocyte maturation and embryo development. Fertil Steril.
86:1392–1401. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu YT, Tang L, Cai J, Lu XE, Xu J, Zhu XM,
Luo Q and Huang HF: High bone morphogenetic protein-15 level in
follicular fluid is associated with high quality oocyte and
subsequent embryonic development. Hum Reprod. 22:1526–1531. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Rosen MP, Zamah AM, Shen S, Dobson AT,
McCulloch CE, Rinaudo PF, Lamb JD and Cedars MI: The effect of
follicular fluid hormones on oocyte recovery after ovarian
stimulation: FSH level predicts oocyte recovery. Reprod Biol
Endocrinol. 7:352009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim YS, Kim MS, Lee SH, Choi BC, Lim JM,
Cha KY and Baek KH: Proteomic analysis of recurrent pregnancy loss:
Identification of an inadequately expressed set of proteins in
human follicular fluid. Proteomics. 6:3445–3454. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim MS, Gu BH, Song S, Choi BC, Cha DH and
Baek KH: ITI-H4, as a biomarker in the serum of recurrent pregnancy
loss (RPL) patients. Mol Biosyst. 7:1430–1440. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Atiomo W, Khalid S, Parameshweran S, Houda
M and Layfield R: Proteomic biomarkers for the diagnosis and risk
stratification of polycystic ovary syndrome: a systematic review.
BJOG. 116:137–143. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jarkovska K, Martinkova J, Liskova L,
Halada P, Moos J, Rezabek K, Gadher SJ and Kovarova H: Proteome
mining of human follicular fluid reveals a crucial role of
complement cascade and key biological pathways in women undergoing
in vitro fertilization. J Proteome Res. 9:1289–1301. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Revised 2003 consensus on diagnostic
criteria and long health risks related to polycystic ovary syndrome
(PCOS). Hum Reprod. 19:41–47. 2004. View Article : Google Scholar
|
25
|
Gravett MG, Thomas A, Schneider KA, Reddy
AP, Dasari S, Jacob T, Lu X, Rodland M, Pereira L, Sadowsky DW, et
al: Proteomic analysis of cervical vaginal fluid: identification of
novel biomarkers for detection of intra-amniotic infection. J
Proteome Res. 6:89–96. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Park JS, Oh KJ, Norwitz ER, Han JS, Choi
HJ, Seong HS, Kang YD, Park CW, Kim BJ, Jun JK, et al:
Identification of proteomic biomarkers of preeclampsia in amniotic
fluid using SELDI-TOF mass spectrometry. Reprod Sci. 15:457–468.
2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sadeghi M, Roohafza H, Afshar H, Rajabi F,
Ramzani M, Shemirani H and Sarafzadeghan N: Relationship between
depression and apolipoproteins A and B: a case-control study.
Clinics (Sao Paulo). 66:113–117. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ferrer F, Nazih H, Zair Y, Krempf M and
Bard JM: Postprandial changes in the distribution of apolipoprotein
AIV between apolipoprotein B- and non apolipoprotein B-containing
lipoproteins in obese women. Metabolism. 52:1537–1541. 2003.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Araki S, Okazaki M and Goto S: Impaired
lipid metabolism in aged mice as revealed by fasting-induced
expression of apolipoprotein mRNAs in the liver and changes in
serum lipids. Gerontology. 50:206–215. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Qin X and Tso P: The role of
apolipoprotein AIV on the control of food intake. Curr Drug
Targets. 6:145–151. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Whited KL, Lu D, Tso P, Kent Lloyd KC and
Raybould HE: Apolipoprotein A-IV is involved in detection of lipid
in the rat intestine. J Physiol. 569:949–958. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Culnan DM, Cooney RN, Stanley B and Lynch
CJ: Apolipoprotein A-IV, a putative satiety/antiatherogenic factor,
rises after gastric bypass. Obesity. 17:46–52. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ostos MA, Conconi M, Vergnes L, Baroukh N,
Ribalta J, Girona J, Caillaud JM, Ochoa A and Zakin MM:
Antioxidative and antiatherosclerotic effects of human
apolipoprotein A-IV in apolipoprotein E-deficient mice.
Arterioscler Thromb Vasc Biol. 21:1023–1028. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Broedl UC, Schachinger V, Lingenhel A,
Lehrke M, Stark R, Seibold F, Göke B, Kronenberg F, Parhofer KG and
Konrad-Zerna A: Apolipoprotein A-IV is an independent predictor of
disease activity in patients with inflammatory bowel disease.
Inflamm Bowel Dis. 13:391–397. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Remaley AT, Stonik JA, Demosky SJ, Neufeld
EB, Bocharov AV, Vishnyakova TG, Eggerman TL, Patterson AP,
Duverger NJ, Santamarina-Fojo S, et al: Apolipoprotein specificity
for lipid efflux by the human ABCAI transporter. Biochem Biophys
Res Commun. 280:818–823. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Stylianou IM, Affourtit JP, Shockley KR,
Wilpan RY, Abdi FA, Bhardwaj S, Rollins J, Churchill GA and Paigen
B: Applying gene expression, proteomics and single-nucleotide
polymorphism analysis for complex trait gene identification.
Genetics. 178:1795–1805. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jin EH, Shim SC, Kim HG, Chae SC and Chung
HT: Polymorphisms of COTL1 gene identified by proteomic approach
and their association with autoimmune disorders. Exp Mol Med.
41:354–361. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Weinberg RB: Apolipoprotein A-IV
polymorphisms and diet-gene interactions. Curr Opin Lipidol.
13:125–134. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vincent S, Planells R, Defoort C, Bernard
MC, Gerber M, Prudhomme J, Vague P and Lairon D: Genetic
polymorphisms and lipoprotein responses to diets. Proc Nutr Soc.
61:427–434. 2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bai H, Liu R, Liu Y, Saku K and Liu BW:
Distribution and effect of apo A-IV genotype on plasma lipid and
apolipoprotein levels in a Chinese population. Acta Cardiol.
63:315–322. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Heilbronn LK, Noakes M, Morris AM, Kind KL
and Clifton PM: 360His polymorphism of the apolipoproteinA-IV gene
and plasma lipid response to envergy restricted diets in overweight
subjects. Atherosclerosis. 150:187–192. 2000. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kretowski A, Hokanson JE, McFann K, Kinney
GL, Snell-Bergeon JK, Maahs DM, Wadwa RP, Eckel RH, Ogden LG and
Garg SK: The apolipoprotein A-IV Gln360His polymorphism predicts
progression of coronary artery calcification in patients with type
1 diabetes. Diabetologia. 49:1946–1954. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Antoine HJ, Pall M, Trader BC, Chen YD,
Azziz R and Goodarzi MO: Genetic variants in peroxisome
proliferator-activated receptor gamma influence insulin resistance
and testosterone levels in normal women, but not those with
polycystic ovary syndrome. Fertil Steril. 87:862–869. 2007.
View Article : Google Scholar
|
44
|
Codner E and Cassorla F: Puberty and
ovarian function in girls with type 1 diabetes mellitus. Horm Res.
71:12–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Tsanadis G, Vartholomatos G, Korkontzelos
I, Avgoustatos F, Kakosimos G, Sotiriadis A, Tatsioni A,
Eleftheriou A and Lolis D: Polycystic ovarian syndrome and
thrombophilia. Hum Reprod. 17:314–319. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Atiomo WU, Bates SA, Condon JE, Shaw S,
West JH and Prentice AG: The plasminogen activator system in women
with polycystic ovary syndrome. Fertil Steril. 69:236–241. 1998.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Dahlgren E, Janson PO, Johansson S,
Lapidus L, Lindstedt G and Tengborn L: Hemostatic and metabolic
variables in women with polycystic ovary syndrome. Fertil Steril.
61:455–460. 1994.PubMed/NCBI
|
48
|
Kelly CJ, Lyall H, Petrie JR, Gould GW,
Connell JM, Rumley A, Lowe GD and Sattar N: A specific elevation in
tissue plasminogen activator antigen in women with polycystic
ovarian syndrome. J Clin Endocrinol Metab. 87:3287–3290. 2002.
View Article : Google Scholar : PubMed/NCBI
|