1
|
Sakuragawa N, Yoshikawa H and Sasaki M:
Amniotic tissue transplantation: clinical and biochemical
evaluations for some lysosomal storage diseases. Brain Dev.
14:7–11. 1992. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wolbank S, Peterbauer A, Fahrner M, et al:
Dose-dependent immunomodulatory effect of human stem cells from
amniotic membrane: a comparison with human mesenchymal stem cells
from adipose tissue. Tissue Eng. 13:1173–1183. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hori J, Wang M, Kamiya K, Takahashi H and
Sakuragawa N: Immunological characteristics of amniotic epithelium.
Cornea. 25(Suppl 1): S53–S58. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lefebvre S, Adrian F, Moreau P, et al:
Modulation of HLA-G expression in human thymic and amniotic
epithelial cells. Hum Immunol. 61:1095–1101. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sakuragawa N, Kakinuma K, Kikuchi A, et
al: Human amnion mesenchyme cells express phenotypes of neuroglial
progenitor cells. J Neurosci Res. 78:208–214. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Konig JM, Huppertz B, Desoye G, et al:
Amnion-derived mesenchymal stromal cells show angiogenic properties
but resist differentiation into mature endothelial cells. Stem
Cells Dev. 21:1309–1320. 2012. View Article : Google Scholar
|
7
|
Alviano F, Fossati V, Marchionni C, et al:
Term amniotic membrane is a high throughput source for multipotent
mesenchymal stem cells with the ability to differentiate into
endothelial cells in vitro. BMC Dev Biol. 7:112007.PubMed/NCBI
|
8
|
Zhang P, Baxter J, Vinod K, Tulenko TN and
Di Muzio PJ: Endothelial differentiation of amniotic fluid-derived
stem cells: synergism of biochemical and shear force stimuli. Stem
Cells Dev. 18:1299–1308. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ashton N, Ward B and Serpell G: Effect of
oxygen on developing retinal vessels with particular reference to
the problem of retrolental fibroplasia. Br J Ophthalmol.
38:397–432. 1954. View Article : Google Scholar : PubMed/NCBI
|
10
|
Knighton DR, Silver IA and Hunt TK:
Regulation of wound-healing angiogenesis-effect of oxygen gradients
and inspired oxygen concentration. Surgery. 90:262–270.
1981.PubMed/NCBI
|
11
|
Knighton DR, Hunt TK, Scheuenstuhl H,
Halliday BJ, Werb Z and Banda MJ: Oxygen tension regulates the
expression of angiogenesis factor by macrophages. Science.
221:1283–1285. 1983. View Article : Google Scholar : PubMed/NCBI
|
12
|
Thomlinson RH and Gray LH: The
histological structure of some human lung cancers and the possible
implications for radiotherapy. Br J Cancer. 9:539–549. 1955.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Folkman J, Merler E, Abernathy C and
Williams G: Isolation of a tumor factor responsible for
angiogenesis. J Exp Med. 133:275–288. 1971. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Y, Cox SR, Morita T and Kourembanas S:
Hypoxia regulates vascular endothelial growth factor gene
expression in endothelial cells. Identification of a 5′ enhancer.
Circ Res. 77:638–643. 1995.
|
15
|
Forsythe JA, Jiang BH, Iyer NV, et al:
Activation of vascular endothelial growth factor gene transcription
by hypoxia-inducible factor 1. Mol Cell Biol. 16:4604–4613.
1996.PubMed/NCBI
|
16
|
Gerber HP, Condorelli F, Park J and
Ferrara N: Differential transcriptional regulation of the two
vascular endothelial growth factor receptor genes. Flt-1, but not
Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem.
272:23659–23667. 1997. View Article : Google Scholar
|
17
|
Waltenberger J, Mayr U, Pentz S and
Hombach V: Functional upregulation of the vascular endothelial
growth factor receptor KDR by hypoxia. Circulation. 94:1647–1654.
1996. View Article : Google Scholar : PubMed/NCBI
|
18
|
Goodell MA, Rosenzweig M, Kim H, et al:
Dye efflux studies suggest that hematopoietic stem cells expressing
low or undetectable levels of CD34 antigen exist in multiple
species. Nat Med. 3:1337–1345. 1997. View Article : Google Scholar
|
19
|
Welm BE, Tepera SB, Venezia T, Graubert
TA, Rosen JM and Goodell MA: Sca-1(pos) cells in the mouse mammary
gland represent an enriched progenitor cell population. Dev Biol.
245:42–56. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wulf GG, Luo KL, Jackson KA, Brenner MK
and Goodell MA: Cells of the hepatic side population contribute to
liver regeneration and can be replenished with bone marrow stem
cells. Haematologica. 88:368–378. 2003.PubMed/NCBI
|
21
|
Uchida N, Fujisaki T, Eaves AC and Eaves
CJ: Transplantable hematopoietic stem cells in human fetal liver
have a CD34(+) side population (SP)phenotype. J Clin Invest.
108:1071–1077. 2001.
|
22
|
Gussoni E, Soneoka Y, Strickland CD, et
al: Dystrophin expression in the mdx mouse restored by stem cell
transplantation. Nature. 401:390–394. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kobayashi M, Yakuwa T, Sasaki K, et al:
Multilineage potential of side population cells from human amnion
mesenchymal layer. Cell Transplant. 17:291–301. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yamaguchi TP, Dumont DJ, Conlon RA,
Breitman ML and Rossant J: flk-1, an flt-related receptor tyrosine
kinase is an early marker for endothelial cell precursors.
Development. 118:489–498. 1993.PubMed/NCBI
|
25
|
Shibuya M, Seetharam L, Ishii Y, et al:
Possible involvement of VEGF-FLT tyrosine kinase receptor system in
normal and tumor angiogenesis. Princess Takamatsu Symp. 24:162–170.
1994.PubMed/NCBI
|
26
|
Lobb R, Chi-Rosso G, Leone D, et al:
Expression and functional characterization of a soluble form of
vascular cell adhesion molecule 1. Biochem Biophys Res Commun.
178:1498–1504. 1991. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jones TR, Kao KJ, Pizzo SV and Bigner DD:
Endothelial cell surface expression and binding of factor VIII/von
Willebrand factor. Am J Pathol. 103:304–308. 1981.PubMed/NCBI
|
28
|
Lampugnani MG, Resnati M, Raiteri M, et
al: A novel endothelial-specific membrane protein is a marker of
cell-cell contacts. J Cell Biol. 118:1511–1522. 1992. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nichols J, Zevnik B, Anastassiadis K, et
al: Formation of pluripotent stem cells in the mammalian embryo
depends on the POU transcription factor Oct4. Cell. 95:379–391.
1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Niwa H, Miyazaki J and Smith AG:
Quantitative expression of Oct-3/4 defines differentiation,
dedifferentiation or self-renewal of ES cells. Nat Genet.
24:372–376. 2000. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Imamura M, Miura K, Iwabuchi K, et al:
Transcriptional repression and DNA hypermethylation of a small set
of ES cell marker genes in male germline stem cells. BMC Dev Biol.
6:342006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chambers I, Colby D, Robertson M, et al:
Functional expression cloning of Nanog, a pluripotency sustaining
factor in embryonic stem cells. Cell. 113:643–655. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mitsui K, Tokuzawa Y, Itoh H, et al: The
homeoprotein Nanog is required for maintenance of pluripotency in
mouse epiblast and ES cells. Cell. 113:631–642. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Levine AJ and Brivanlou AH: GDF3, a BMP
inhibitor, regulates cell fate in stem cells and early embryos.
Development. 133:209–216. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li Y, McClintick J, Zhong L, Edenberg HJ,
Yoder MC and Chan RJ: Murine embryonic stem cell differentiation is
promoted by SOCS-3 and inhibited by the zinc finger transcription
factor Klf4. Blood. 105:635–637. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Cartwright P, McLean C, Sheppard A, Rivett
D, Jones K and Dalton S: LIF/STAT3 controls ES cell self-renewal
and pluripotency by a Myc-dependent mechanism. Development.
132:885–896. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Avilion AA, Nicolis SK, Pevny LH, Perez L,
Vivian N and Lovell-Badge R: Multipotent cell lineages in early
mouse development depend on SOX2 function. Genes Dev. 17:126–140.
2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ben-Shushan E, Thompson JR, Gudas LJ and
Bergman Y: Rex-1, a gene encoding a transcription factor expressed
in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to
an octamer site and a novel protein, Rox-1, binding to an adjacent
site. Mol Cell Biol. 18:1866–1878. 1998.PubMed/NCBI
|
39
|
Yuan H, Corbi N, Basilico C and Dailey L:
Developmental-specific activity of the FGF-4 enhancer requires the
synergistic action of Sox2 and Oct-3. Genes Dev. 9:2635–2645. 1995.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Yang C, Przyborski S, Cooke MJ, et al: A
key role for telomerase reverse transcriptase unit in modulating
human embryonic stem cell proliferation, cell cycle dynamics, and
in vitro differentiation. Stem Cells. 26:850–863. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Park D, Xiang AP, Mao FF, et al: Nestin is
required for the proper self-renewal of neural stem cells. Stem
Cells. 28:2162–2171. 2010. View
Article : Google Scholar : PubMed/NCBI
|
42
|
Kaneko Y, Sakakibara S, Imai T, et al:
Musashi1: an evolutio- nally conserved marker for CNS progenitor
cells including neural stem cells. Dev Neurosci. 22:139–153. 2000.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang GL and Semenza GL: Characterization
of hypoxia-inducible factor 1 and regulation of DNA binding
activity by hypoxia. J Biol Chem. 268:21513–21518. 1993.PubMed/NCBI
|
44
|
Semenza GL, Roth PH, Fang HM and Wang GL:
Transcriptional regulation of genes encoding glycolytic enzymes by
hypoxia-inducible factor 1. J Biol Chem. 269:23757–23763.
1994.PubMed/NCBI
|
45
|
Nguyen SV and Claycomb WC: Hypoxia
regulates the expression of the adrenomedullin and HIF-1 genes in
cultured HL-1 cardiomyocytes. Biochem Biophys Res Commun.
265:382–386. 1999. View Article : Google Scholar : PubMed/NCBI
|
46
|
Pescador N, Cuevas Y, Naranjo S, et al:
Identification of a functional hypoxia-responsive element that
regulates the expression of the egl nine homologue 3 (egln3/phd3)
gene. Biochem J. 390:189–197. 2005. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lennon DP, Edmison JM and Caplan AI:
Cultivation of rat marrow-derived mesenchymal stem cells in reduced
oxygen tension: Effects on in vitro and in vivo
osteochondrogenesis. J Cell Physiol. 187:345–355. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Das R, Jahr H, van Osch GJ and Farrell E:
The role of hypoxia in bone marrow-derived mesenchymal stem cells:
considerations for regenerative medicine approaches. Tissue Eng
Part B Rev. 16:159–168. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pugh CW and Ratcliffe PJ: Regulation of
angiogenesis by hypoxia: role of the HIF system. Nat Med.
9:677–684. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Szablowska-Gadomska I, Zayat V and
Buzanska L: Influence of low oxygen tensions on expression of
pluripotency genes in stem cells. Acta Neurobiol Exp. 71:86–93.
2011.PubMed/NCBI
|