1
|
Moonesinghe SR, Mythen MG and Grocott MP:
High-risk surgery: epidemiology and outcomes. Anesth Analg.
112:891–901. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Weiser TG, Regenbogen SE, Thompson KD, et
al: An estimation of the global volume of surgery: a modelling
strategy based on available data. Lancet. 372:139–144.
2008.PubMed/NCBI
|
3
|
Wei H, Liang G, Yang H, et al: The common
inhalational anesthetic isoflurane induces apoptosis via activation
of inositol 1,4,5-trisphosphate receptors. Anesthesiology.
108:251–260. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Loop T and Priebe HJ: Costs of
anaesthesia. Eur J Anaesthesiol. 22:1622005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fournier N, Ducet G and Crevat A: Action
of cyclosporine on mitochondrial calcium fluxes. J Bioenerg
Biomembr. 19:297–303. 1987. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jevtovic-Todorovic V, Hartman RE, Izumi Y,
et al: Early exposure to common anesthetic agents causes widespread
neurodegeneration in the developing rat brain and persistent
learning deficits. J Neurosci. 23:876–882. 2003.
|
7
|
Wang S, Peretich K, Zhao Y, et al:
Anesthesia-induced neurodegeneration in fetal rat brains. Pediatr
Res. 66:435–440. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Winegar BD and Yost CS: Volatile
anesthetics directly activate baseline S K+ channels in
Aplysia neurons. Brain Res. 807:255–262. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Talley EM and Bayliss DA: Modulation of
TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile
anesthetics and neurotransmitters share a molecular site of action.
J Biol Chem. 277:17733–17742. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Franks NP: Molecular targets underlying
general anesthesia. Br J Pharmacol. 147(Suppl 1): S72–S81. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Loepke AW, McCann JC, Kurth C and
McAuliffe JJ: The physiologic effects of isoflurane anesthesia in
neonatal mice. Anesth Analg. 102:75–80. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fulda S, Galluzzi L and Kroemer G:
Targeting mitochondria for cancer therapy. Nat Rev Drug Discov.
9:447–464. 2010. View
Article : Google Scholar
|
13
|
Csiszar A, Labinskyy N, Pinto JT, et al:
Resveratrol induces mitochondrial biogenesis in endothelial cells.
Am J Physiol Heart Circ Physiol. 297:H13–H20. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pervaiz S: Resveratrol: from grapevines to
mammalian biology. FASEB J. 17:1975–1985. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Frémont L: Biological effects of
resveratrol. Life Sci. 66:663–673. 2000.
|
16
|
Wang Q, Xu J, Rottinghaus GE, et al:
Resveratrol protects against global cerebral ischemic injury in
gerbils. Brain Res. 958:439–447. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
West T, Atzeva M and Holtzman DM:
Pomegranate polyphenols and resveratrol protect the neonatal brain
against hypoxic-ischemic injury. Dev Neurosci. 29:363–372. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ates O, Cayli S, Altinoz E, et al: Effects
of resveratrol and methylprednisolone on biochemical,
neurobehavioral and histopathological recovery after experimental
spinal cord injury. Acta Pharmacol Sin. 27:1317–1325. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kaplan S, Bisleri G, Morgan JA, et al:
Resveratrol, a natural red wine polyphenol, reduces
ischemia-reperfusion-induced spinal cord injury. Ann Thorac Surg.
80:2242–2249. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Parker JA, Arango M, Abderrahmane S, et
al: Resveratrol rescues mutant polyglutamine cytotoxicity in
nematode and mammalian neurons. Nat Genet. 37:349–350. 2005.
View Article : Google Scholar
|
21
|
Markaryan A, Nelson EG, Tretiakova M and
Hinojosa R: Technical report: immunofluorescence and TUNEL staining
of celloidin embedded human temporal bone tissues. Hear Res.
241:1–6. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hurst PR, Mora JM and Fenwick MA:
Caspase-3, TUNEL and ultrastructural studies of small follicles in
adult human ovarian biopsies. Hum Reprod. 21:1974–1980. 2006.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Rajagopalan R, Ranjan S and Nair CK:
Effect of vinblastine sulfate on gamma-radiation-induced DNA
single-strand breaks in murine tissues. Mutat Res. 536:15–25. 2003.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Singh NP: Microgels for estimation of DNA
strand breaks, DNA protein crosslinks and apoptosis. Mutat Res.
455:111–127. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang Y, Dong Y, Xu Z and Xie Z: Propofol
and magnesium attenuate isoflurane-induced caspase-3 activation via
inhibiting mitochondrial permeability transition pore. Med Gas Res.
2:202012. View Article : Google Scholar
|
26
|
Chang HC, Lin KH, Tai YT, et al:
Lipoteichoic acid-induced TNF-α and IL-6 gene expressions and
oxidative stress production in macrophages are suppressed by
ketamine through downregulating Toll-like receptor 2-mediated
activation of ERK1/2 and NFκB. Shock. 33:485–492. 2010.
|
27
|
Aebi H: Catalase in vitro. Methods
Enzymol. 105:121–126. 1984. View Article : Google Scholar
|
28
|
Thornberry NA: Caspases: key mediators of
apoptosis. Chem Biol. 5:R97–R103. 1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hansen HH, Briem T, Dzietko M, et al:
Mechanisms leading to disseminated apoptosis following NMDA
receptor blockade in the developing rat brain. Neurobiol Dis.
16:440–453. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lu LX, Yon JH, Carter LB and
Jevtovic-Todorovic V: General anesthesia activates BDNF-dependent
neuroapoptosis in the developing rat brain. Apoptosis.
11:1603–1615. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Quinn JJ, Loya F, Ma QD and Fanselow MS:
Dorsal hippocampus NMDA receptors differentially mediate trace and
contextual fear conditioning. Hippocampus. 15:665–674. 2005.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Xie Z, Dong Y, Maeda U, et al: The common
inhalation anesthetic isoflurane induces apoptosis and increases
amyloid beta protein levels. Anesthesiology. 104:988–994. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kindler CH, Eilers H, Donohoe P, et al:
Volatile anesthetics increase intracellular calcium in
cerebrocortical and hippocampal neurons. Anesthesiology.
90:1137–1145. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wei H, Kang B, Wei W, et al: Isoflurane
and sevoflurane affect cell survival and BCL-2/BAX ratio
differently. Brain Res. 1037:139–147. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Baur JA and Sinclair DA: Therapeutic
potential of resveratrol: the in vivo evidence. Nat Rev Drug
Discov. 5:493–506. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yoshida Y, Shioi T and Izumi T:
Resveratrol ameliorates experimental autoimmune myocarditis. Circ
J. 71:397–404. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zini R, Morin C, Bertelli A, et al:
Effects of resveratrol on the rat brain respiratory chain. Drugs
Exp Clin Res. 25:87–97. 1999.PubMed/NCBI
|
38
|
Ookawara T, Imazeki N, Matsubata O, et al:
Tissue distribution of immunoreactive mouse extracellular
superoxide dismutase. Am J Physiol. 275:840–847. 1998.PubMed/NCBI
|
39
|
Hinerfeld D, Traini MD, Weinberger RP, et
al: Endogenous mitochondrial oxidative stress: neurodegeneration,
proteomic analysis, specific respiratory chain defects, and
efficacious antioxidant therapy in superoxide dismutase 2 null
mice. J Neurochem. 88:657–667. 2004. View Article : Google Scholar
|
40
|
Aziz MH, Nihal M, Fu VX, et al:
Resveratrol-caused apoptosis of human prostate carcinoma LNCaP
cells in mediated via modulation of phosphatidilinositol
3′-kinase/Akt pathway and Bcl-2 family proteins. Mol Cancer Ther.
5:1335–1341. 2006.PubMed/NCBI
|
41
|
Pozo-Guisado E, Merino JM, Mulero-Navarro
S, et al: Resveratrol-induced apoptosis in MCF-7 human breast
cancer cells involves a caspase-independent mechanism with
downregulation of Bcl-2 and NF-kappaB. Int J Cancer. 115:74–84.
2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Alkhalaf M: Resveratrol-induced growth
inhibition in MDA-MB-231 breast cancer cells is associated with
mitogen-activated protein kinase signaling and protein translation.
Eur J Cancer Pre. 16:334–341. 2007. View Article : Google Scholar
|
43
|
She QB, Bode AM, Ma WY, et al:
Resveratrol-induced activation of p53 and apoptosis is mediated by
extracellular-signal-regulated protein kinase and p38 kinase.
Cancer Res. 61:1604–1610. 2001.PubMed/NCBI
|
44
|
She QB, Huang C, Zhang Y and Dong Z:
Involvement of c-jun NH(2)-terminal kinases in resveratrol-induced
activation of p53 and apoptosis. Mol Carcinog. 33:244–250. 2002.
View Article : Google Scholar : PubMed/NCBI
|