Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review)
- Authors:
- Carlo Maria Di Liegro
- Gabriella Schiera
- Italia Di Liegro
-
Affiliations: Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy, Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, I-90127 Palermo, Italy - Published online on: January 21, 2014 https://doi.org/10.3892/ijmm.2014.1629
- Pages: 747-762
-
Copyright: © Di Liegro et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Mauger DM, Siegfried NA and Weeks KM: The genetic code as expressed through relationships between mRNA structure and protein function. FEBS Lett. 587:1180–1188. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thapar R and Denmon AP: Signaling pathways that control mRNA turnover. Cell Signal. 25:1699–1710. 2013. View Article : Google Scholar : PubMed/NCBI | |
Will CL and Lührmann R: Spliceosome structure and function. Cold Spring Harb Perspect Biol. 3:pii: a003707. 2011. | |
Chiou NT, Shankarling G and Lynch KW: hnRNP L and hnRNP A1 induce extended U1 snRNA interactions with an exon to repress spliceosome assembly. Mol Cell. 49:972–982. 2013. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Kameyama T, Ohe K, Tsukahara T and Mayeda A: Nested introns in an intron: evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA. FEBS Lett. 587:555–561. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sasaki-Haraguchi N, Shimada MK, Taniguchi I, Ohno M and Mayeda A: Mechanistic insights into human pre-mRNA splicing of human ultra-short introns: potential unusual mechanism identifies G-rich introns. Biochem Biophys Res Commun. 423:289–294. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto K, Wassarman KM and Wolffe AP: Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J. 17:2107–2121. 1998. View Article : Google Scholar : PubMed/NCBI | |
Stewart M: Nuclear export of mRNA. Trends Biochem Sci. 35:609–617. 2010. View Article : Google Scholar | |
Ramos A, Gubser CC and Varani G: Recent solution structures of RNA and its complexes with drugs, peptides and proteins. Curr Opin Struct Biol. 7:317–323. 1997. View Article : Google Scholar : PubMed/NCBI | |
Linder P and Tuite MF: The versatility of RNA structure and function. In: Jacques Monod Conference: New insights into the mechanism of mRNA translation: the significance of RNA structure; Aussois, France. 22–26 March 1999; Trends Genet. 15. pp. 302–303. 1999, View Article : Google Scholar : PubMed/NCBI | |
Caprara MG and Nilsen TW: RNA: versatility in form and function. Nat Struct Biol. 7:831–833. 2000. View Article : Google Scholar : PubMed/NCBI | |
Derrigo M, Cestelli A, Savettieri G and Di Liegro I: RNA-protein interactions in the control of stability and localization of messenger RNA (Review). Int J Mol Med. 5:111–123. 2000.PubMed/NCBI | |
Butcher SE and Pyle AM: The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res. 44:1302–1311. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH and Weeks KM: Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Natl Acad Sci USA. 110:5498–5503. 2013. View Article : Google Scholar : PubMed/NCBI | |
Doetsch M, Schroeder R and Fürtig B: Transient RNA-protein interactions in RNA folding. FEBS J. 278:1634–1642. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weeks KM: Protein-facilitated RNA folding. Curr Opin Struct Biol. 7:336–342. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu L and Chen SJ: Coarse-grained prediction of RNA loop structures. PLoS One. 7:e484602012. View Article : Google Scholar : PubMed/NCBI | |
Fuller-Pace FV: RNA helicases: modulators of RNA structure. Trends Cell Biol. 4:271–274. 1994. View Article : Google Scholar : PubMed/NCBI | |
De la Cruz J, Kressler D and Linder P: Unwinding RNA in Saccharomyces cerevisiae: DEAD-box, proteins and related families. Trends Biochem Sci. 24:192–198. 1999. | |
Linder P: mRNA export: RNP remodeling by DEAD-box proteins. Curr Biol. 18:R297–R299. 2008. View Article : Google Scholar : PubMed/NCBI | |
Herschlag D: RNA chaperones and the RNA folding problem. J Biol Chem. 270:20871–20874. 1995. View Article : Google Scholar : PubMed/NCBI | |
Clodi E, Semrad K and Schroeder R: Assaying RNA chaperone activity in vivo using a novel folding trap. EMBO J. 18:3776–3782. 1999. View Article : Google Scholar : PubMed/NCBI | |
Grohman JK, Gorelick RJ, Lickwar CR, Lieb JD, Bower BD, Znosko BM and Weeks KM: A guanosine-centric mechanism for RNA chaperone function. Science. 340:190–195. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kislauskis EH and Singer RH: Determinants of mRNA localization. Curr Opin Cell Biol. 4:975–978. 1992. View Article : Google Scholar : PubMed/NCBI | |
Jambhekar A and Derisi JL: Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA. 13:625–642. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lunde BM, Moore C and Varani G: RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 8:479–490. 2007. View Article : Google Scholar : PubMed/NCBI | |
Doyle M and Kiebler MA: A zipcode unzipped. Genes Dev. 26:110–113. 2012. View Article : Google Scholar | |
Dienstbier M, Boehl F, Li X and Bullock SL: Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev. 23:1546–1558. 2009. View Article : Google Scholar : PubMed/NCBI | |
Patel VL, Mitra S, Harris R, Buxbaum AR, Lionnet T, Benowitz M, Girvin M, Levy M, Almo SC, Singer RH and Chao JA: Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 26:43–53. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chao JA, Patskovsky Y, Patel V, Levy M, Almo SC and Singer RH: ZBP1 recognition of β-actin zipcode induces RNA looping. Genes Dev. 24:148–158. 2010. | |
Burd CG and Dreyfuss G: Conserved structures and diversity of functions of RNA-binding proteins. Science. 265:615–621. 1994. View Article : Google Scholar : PubMed/NCBI | |
Siomi H, Matunis MJ, Michael WM and Dreyfuss G: The pre-mRNA binding K protein contains a novel evolutionary conserved motif. Nucleic Acids Res. 21:1193–1198. 1993. View Article : Google Scholar : PubMed/NCBI | |
St Johnston D, Benchle D and Nusslein-Volhard C: Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell. 66:51–63. 1991.PubMed/NCBI | |
Dubnau J, Chiang AS, Grady L, Barditch J, Gossweiler S, McNeil J, Smith P, Buldoc F, Scott R, Certa U, Broger C and Tully T: The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol. 13:286–296. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Hu JY, Wu F, Schwartz JH and Schacher S: Two mRNA-binding proteins regulate the distribution of syntaxin mRNA in Aplysia sensory neurons. J Neurosci. 26:5204–5214. 2006. View Article : Google Scholar : PubMed/NCBI | |
Furic L, Maher-Laporte M and DesGroseillers L: A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA. 14:324–335. 2008. View Article : Google Scholar | |
Lebeau G, DesGroseillers L, Sossin W and Lacaille JC: mRNA binding protein staufen 1-dependent regulation of pyramidal cell spine morphology via NMDA receptor-mediated synaptic plasticity. Mol Brain. 4:222011. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Fan D, Gui B, Shi L, Xuan C, Shan L, Wang Q, Shang Y and Wang Y: Neurodegeneration-associated TDP-43 interacts with fragile X mental retardation protein (FMRP)/Staufen (STAU1) and regulates SIRT1 expression in neuronal cells. J Biol Chem. 287:22560–22572. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ravasi T, Huber T, Zavolan M, Forrest A, Gaasterland T, Grimmond S and Hume DA; RIKEN GER Group. GSL Members: Systematic characterization of the zinc-finger-containing proteins in the mouse transcriptome. Genome Res. 13:1430–1442. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brown RS: Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol. 15:94–98. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu B and Koenig RJ: An RNA-binding domain in the thyroid hormone receptor enhances transcriptional activation. J Biol Chem. 279:33051–33056. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dominski Z, Erkmann JA, Yang X, Sanchez R and Marzluff WF: A novel zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding protein in the histone pre-mRNP to stimulate 3′-end processing. Genes Dev. 16:58–71. 2002.PubMed/NCBI | |
Brewer BY, Malicka J, Blackshear PJ and Wilson GM: RNA sequence elements required for high affinity binding by the zinc finger domain of tristetraprolin: conformational changes coupled to the bipartite nature of AU-rich mRNA-destabilizing motifs. J Biol Chem. 279:27870–27877. 2004. View Article : Google Scholar | |
Sanduja S, Blanco FF and Dixon DA: The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2:42–57. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carballo E, Lai WS and Blackshear PJ: Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science. 281:1001–1005. 1998. | |
Miroci H, Schob C, Kindler S, Ölschläger-Schütt J, Fehr S, Jungenitz T, Schwarzacher SW, Bagni C and Mohr E: Makorin ring zinc finger protein 1 (MKRN1), a novel poly(A)-binding protein-interacting protein, stimulates translation in nerve cells. J Biol Chem. 287:1322–1334. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grauman PL and Marahiel MA: A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci. 23:286–290. 1998. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto K, Meric F and Wolffe AP: Translational repression dependent on the interaction of the Xenopus Y-box Protein FRGY2 with mRNA. Role of the cold shock domain, tail domain, and selective RNA sequence recognition. J Biol Chem. 271:22706–22712. 1996. View Article : Google Scholar : PubMed/NCBI | |
Nastasi T, Scaturro M, Bellafiore M, Raimondi L, Beccari S, Cestelli A and Di Liegro I: PIPPin is a brain-specific protein that contains a cold-shock domain and binds specifically to H1 degrees and H3.3 mRNAs. J Biol Chem. 274:24087–24093. 1999. View Article : Google Scholar : PubMed/NCBI | |
Di Liegro CM, Schiera G, Proia P, Saladino P and Di Liegro I: Identification in the rat brain of a set of nuclear proteins interacting with H1° mRNA. Neuroscience. 229:71–76. 2013.PubMed/NCBI | |
Chu E and Allegra CJ: The role of thymidylate synthase as an RNA binding protein. Bioessays. 18:191–198. 1996. View Article : Google Scholar : PubMed/NCBI | |
Preiss T, Chrzanowska-Lightowlers ZM and Lightowlers RN: Glutamate dehydrogenase: an organelle-specific mRNA-binding protein. Trends Biochem Sci. 22:2901997. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Yi X, Stoffer JB, Bonafe N, Gilmore-Hebert M, McAlpine J and Chambers SK: The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res. 6:1375–1384. 2008. View Article : Google Scholar | |
Saladino P, Di Liegro CM, Proia P, Sala A, Schiera G, Lo Cicero A and Di Liegro I: RNA-binding activity of the rat calmodulin-binding PEP-19 protein and of the long PEP-19 isoform. Int J Mol Med. 29:141–145. 2012.PubMed/NCBI | |
He L and Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI | |
Bartel B: MicroRNAs: target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fabian MR and Sonenberg N: The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 19:586–593. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mendell JT: MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 4:1179–1184. 2005. View Article : Google Scholar : PubMed/NCBI | |
Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar | |
Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009. View Article : Google Scholar : PubMed/NCBI | |
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar | |
Ciafrè S and Galardi S: MicroRNAs and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol. 10:935–942. 2013.PubMed/NCBI | |
Kosik KS and Krichevsky AM: The elegance of the microRNAs: a neuronal perspective. Neuron. 47:779–782. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M and Greenberg ME: A brain-specific microRNA regulates dendritic spine development. Nature. 439:283–289. 2006. View Article : Google Scholar : PubMed/NCBI | |
Im HI and Kenny PJ: MicroRNAs in neuronal function and disfunction. Trends Neurosci. 35:325–334. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee SR and Lykke-Andersen J: Emerging roles for ribonucleoprotein modification and remodelling in controlling RNA fate. Trends Cell Biol. 23:504–510. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paquin N and Chartrand P: Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol. 18:105–111. 2008. View Article : Google Scholar : PubMed/NCBI | |
Struhl K and Segal E: Determinants of nucleosome positioning. Nat Struct Mol Biol. 20:267–273. 2013. View Article : Google Scholar | |
Paul S and Knott JG: Epigenetic control of cell fate in mouse blastocysts: the role of covalent histone modifications and chromatin remodeling. Mol Reprod Dev. Jul 24–2013.(Epub ahead of print). | |
Szenker E, Ray-Gallet D and Almouzni G: The double face of the histone variant H3.3. Cell Res. 21:421–434. 2011. View Article : Google Scholar | |
Castiglia D, Cestelli A, Scaturro M, Nastasi T and Di Liegro I: H1(0) and H3.3B mRNA levels in developing rat brain. Neurochem Res. 19:1531–1537. 1994. View Article : Google Scholar | |
Scaturro M, Cestelli A, Castiglia D, Nastasi T and Di Liegro I: Posttranscriptional regulation of H1 zero and H3.3B histone genes in differentiating rat cortical neurons. Neurochem Res. 20:969–976. 1995. View Article : Google Scholar : PubMed/NCBI | |
Scaturro M, Nastasi T, Raimondi L, Bellafiore M, Cestelli A and Di Liegro I: H1(0) RNA-binding proteins specifically expressed in the rat brain. J Biol Chem. 273:22788–22791. 1998. View Article : Google Scholar : PubMed/NCBI | |
Castiglia D, Scaturro M, Nastasi T, Cestelli A and Di Liegro I: PIPPin, a putative RNA-binding protein specifically expressed in the rat brain. Biochem Biophys Res Commun. 218:390–394. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sala A, Scaturro M, Proia P, Schiera G, Balistreri E, Aflalo-Rattenbach R, Créau N and Di Liegro I: Cloning of a rat-specific long PCP4/PEP19 isoform. Int J Mol Med. 19:501–509. 2007.PubMed/NCBI | |
Ziai R, Pan YC, Hulmes JD, Sangameswaran L and Morgan JI: Isolation, sequence, and developmental profile of a brain-specific polypeptide, PEP-19. Proc Natl Acad Sci USA. 83:8420–8423. 1986. View Article : Google Scholar : PubMed/NCBI | |
Slemmon JR, Morgan JI, Fullerton SM, Danho W, Hilbush BS and Wengenack TM: Camstatins are peptide antagonists of calmodulin based upon a conserved structural motif in PEP-19, neurogranin, and neuromodulin. J Biol Chem. 271:15911–15917. 1996. View Article : Google Scholar : PubMed/NCBI | |
Auld GC, Campbell DG, Morrice N and Cohen P: Identification of calcium-regulated heat-stable protein of 24 kDa (CRHSP24) as a physiological substrate for PKB and RSK using KESTREL. Biochem J. 389:775–783. 2005. View Article : Google Scholar : PubMed/NCBI | |
St Johnston D: Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol. 6:363–375. 2005.PubMed/NCBI | |
Palacios IM: How does an mRNA find its way? Intracellular localisation of transcripts. Semin Cell Dev Biol. 18:163–170. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gonsalvez GB and Long RM: Spatial regulation of translation through RNA localization. F1000 Biol Rep. 4:162012. View Article : Google Scholar : PubMed/NCBI | |
St Johnston D: The intracellular localization of messenger RNAs. Cell. 81:161–170. 1995.PubMed/NCBI | |
Doyle M and Kiebler MA: Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J. 30:3540–3552. 2011. View Article : Google Scholar : PubMed/NCBI | |
Andreassi C and Riccio A: To localize or not to localize: mRNA fate is in 3′UTR ends. Trends Cell Biol. 19:465–474. 2009. | |
Jung H, Yoon BC and Holt CE: Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci. 13:308–324. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holt CE and Bullock SL: Subcellular mRNA localization in animal cells and why it matters. Science. 326:1212–1216. 2009. View Article : Google Scholar : PubMed/NCBI | |
Donnelly CJ, Fainzilber M and Twiss JL: Subcellular communication through RNA transport and localized protein synthesis. Traffic. 11:1498–1505. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eberwine J, Miyashiro K, Kacharmina JE and Job C: Local translation of classes of mRNAs that are targeted to neuronal dendrites. Proc Natl Acad Sci USA. 98:7080–7085. 2001. View Article : Google Scholar : PubMed/NCBI | |
Grooms SY, Noh KM, Regis R, Bassell GJ, Bryan MK, Carroll RC and Zukin RS: Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. J Neurosci. 26:8339–8351. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rook MS, Lu M and Kosik KS: CaMKIIalpha 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J Neurosci. 20:6385–6393. 2000. | |
Tiruchinapalli DM, Oleynikov Y, Kelic S, Shenoy SM, Hartley A, Stanton PK, Singer RH and Bassell GJ: Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. J Neurosci. 23:3251–3261. 2003.PubMed/NCBI | |
Muslimov IA, Santi E, Homel P, Perini S, Higgins D and Tiedge H: RNA transport in dendrites: a cis-acting targeting element is contained within neuronal BC1 RNA. J Neurosci. 17:4722–4733. 1997.PubMed/NCBI | |
Rozhdestvensky TS, Kopylov AM, Brosius J and Hüttenhofer A: Neuronal BC1 RNA structure: evolutionary conversion of a tRNA(Ala) domain into an extended stem-loop structure. RNA. 7:722–730. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cristofanilli M, Iacoangeli A, Muslimov IA and Tiedge H: Neuronal BC1 RNA: microtubule-dependent dendritic delivery. J Mol Biol. 356:1118–1123. 2006. View Article : Google Scholar : PubMed/NCBI | |
Blichenberg A, Schwanke B, Rehbein M, Garner CC, Richter D and Kindler S: Identification of a cis-acting dendritic targeting element in MAP2 mRNAs. J Neurosci. 19:8818–8829. 1999.PubMed/NCBI | |
Ainger K, Avossa D, Diana AS, Barry C, Barbarese E and Carson JH: Transport and localization elements in myelin basic protein mRNA. J Cell Biol. 138:1077–1087. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hoek KS, Kidd GJ, Carson JH and Smith R: hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry. 37:7021–7029. 1998. View Article : Google Scholar : PubMed/NCBI | |
Munro TP, Magee RJ, Kidd GJ, Carson JH, Barbarese E, Smith LM and Smith R: Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J Biol Chem. 274:34389–34395. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Tatavarty V, Korza G, Levin MK and Carson JH: Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Mol Biol Cell. 19:2311–2327. 2008. View Article : Google Scholar | |
Mikl M, Vendra G and Kiebler MA: Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers. EMBO Rep. 12:1077–1084. 2011.PubMed/NCBI | |
Tübing F, Vendra G, Mikl M, Macchi P, Thomas S and Kiebler MA: Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J Neurosci. 30:4160–4170. 2010. | |
Mayford M, Baranes D, Podsypanina K and Kandel ER: The 3′-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci USA. 93:13250–13255. 1996. | |
Blichenberg A, Rehbein M, Muller R, Garner CC, Richter D and Kindler S: Identification of a cis-acting dendritic targeting element in the mRNA encoding the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. Eur J Neurosci. 13:1881–1888. 2001. View Article : Google Scholar : PubMed/NCBI | |
Huang YS, Carson JH, Barbarese E and Richter JD: Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 17:638–653. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mori Y, Imaizumi K, Katayama T, Yoneda T and Tohyama M: Two cis-acting elements in the 3′ untranslated region of alpha-CaMKII regulate its dendritic targeting. Nat Neurosci. 3:1079–1084. 2000. | |
Zeitelhofer M, Macchi P and Dahm R: Perplexing bodies: the putative roles of P-bodies in neurons. RNA Biol. 5:244–248. 2008. View Article : Google Scholar : PubMed/NCBI | |
Miller LC, Blandford V, McAdam R, Sanchez-Carbente MR, Badeaux F, DesGroseillers L and Sossin WS: Combinations of DEAD box proteins distinguish distinct types of RNA: protein complexes in neurons. Mol Cell Neurosci. 40:485–495. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ma B, Savas JN, Yu MS, Culver BP, Chao MV and Tanese N: Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons. Sci Rep. 1:1402011. | |
Batista PJ and Chang HY: Cytotopic localization by long noncoding RNAs. Curr Opin Cell Biol. 25:195–199. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lloyd RE: Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA. 4:317–331. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oh JY, Kwon A, Jo A, Kim H, Goo YS, Lee JA and Kim HK: Activity-dependent synaptic localization of processing bodies and their role in dendritic structural plasticity. J Cell Sci. 126:2114–2123. 2013. View Article : Google Scholar : PubMed/NCBI | |
Keene JD and Tenenbaum SA: Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell. 9:1161–1167. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li C, Bassell GJ and Sasaki Y: Fragile X mental retardation protein is involved in protein synthesis-dependent collapse of growth cones induced by semaphorin-3A. Front Neural Circuits. 3:112009.PubMed/NCBI | |
An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B and Xu B: Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell. 134:175–187. 2008. | |
Lau AG, Irier HA, Gu J, Tian D, Ku L, Liu G, Xia M, Fritsch B, Zheng JQ, Dingledine R, Xu B, Lu B and Feng Y: Distinct 3′UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc Natl Acad Sci USA. 107:15945–15950. 2010. | |
Allen M, Bird C, Feng W, Liu G, Li W and Perrone-Bizzozero NI: HuD promotes BDNF expression in brain neurons via selective stabilization of the BDNF long 3′UTR mRNA. PLoS One. 8:e557182013.PubMed/NCBI | |
Ratti A, Fallini C, Cova L, Fantozzi R, Calzarossa C, Zennaro E, Pascale A, Quattrone A and Silani V: A role for the ELAV RNA-binding proteins in neural stem cells: stabilization of Msi1 mRNA. J Cell Sci. 119:1442–1452. 2006. View Article : Google Scholar : PubMed/NCBI | |
Martin KC and Ephrussi A: mRNA localization: gene expression in the spatial dimension. Cell. 136:719–730. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eom T, Antar LN, Singer RH and Bassell GJ: Localization of a beta-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J Neurosci. 23:10433–10444. 2003.PubMed/NCBI | |
Perycz M, Urbanska AS, Krawczyk PS, Parobczak K and Jaworski J: Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J Neurosci. 31:5271–5285. 2011. View Article : Google Scholar : PubMed/NCBI | |
Klein ME, Younts TJ, Castillo PE and Jordan BA: RNA-binding protein Sam68 controls synapse number and local β-actin mRNA metabolism in dendrites. Proc Natl Acad Sci USA. 110:3125–3130. 2013.PubMed/NCBI | |
Cooper MW and Smith SJ: A real time analysis of growth cone target cell interactions during the formation of stable contacts between hippocampal neurons in culture. J Neurobiol. 23:814–828. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ziv NE and Smith SJ: Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron. 17:91–102. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fiala JC, Feinberg M, Popov V and Harris KM: Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci. 18:8900–8911. 1998.PubMed/NCBI | |
Hüttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X, Bassell GJ, Condeelis J and Singer RH: Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature. 438:512–515. 2005.PubMed/NCBI | |
Giorgi C and Moore MJ: The nuclear nurture and cytoplasmic nature of localized mRNPs. Semin Cell Dev Biol. 18:186–193. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sasaki Y, Welshhans K, Wen Z, Yao J, Xu M, Goshima Y, Zheng JQ and Bassell GJ: Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local beta-actin synthesis and growth cone turning. J Neurosci. 30:9349–9358. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brouwer JR, Willemsen R and Oostra BA: The FMR1 gene and fragile X-associated tremor/ataxia syndrome. Am J Med Genet B Neuropsychiatr Genet. 150B:782–798. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sellier C, Rau F, Liu Y, Tassone F, Hukema RK, Gattoni R, Schneider A, Richard S, Willemsen R, Elliott DJ, Hagerman PJ and Charlet-Berguerand N: Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J. 29:1248–1261. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gu W, Pan F, Zhang H, Bassell GJ and Singer RH: A predominantly nuclear protein affecting cytoplasmic localization of beta-actin mRNA in fibroblasts and neurons. J Cell Biol. 156:41–51. 2002. View Article : Google Scholar : PubMed/NCBI | |
Min H, Turck CW, Nikolic JM and Black DL: A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 11:1023–1036. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rehbein M, Kindler S, Horke S and Richter D: Two trans-acting rat-brain proteins, MARTA1 and MARTA2, interact specifically with the dendritic targeting element in MAP2 mRNAs. Brain Res Mol Brain Res. 79:192–201. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rehbein M, Wege K, Buck F, Schweizer M, Richter D and Kindler S: Molecular characterization of MARTA1, a protein interacting with the dendritic targeting element of MAP2 mRNAs. J Neurochem. 82:1039–1046. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pan F, Huttelmaier S, Singer RH and Gu W: ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol Cell Biol. 27:8340–8351. 2007. View Article : Google Scholar : PubMed/NCBI | |
White R, Gonsior C, Bauer NM, Krämer-Albers EM, Luhmann HJ and Trotter J: Heterogeneous nuclear ribonucleoprotein (hnRNP) F is a novel component of oligodendroglial RNA transport granules contributing to regulation of myelin basic protein (MBP) synthesis. J Biol Chem. 287:1742–1754. 2012. View Article : Google Scholar | |
Kiebler MA and Bassell GJ: Neuronal RNA granules: movers and makers. Neuron. 51:685–690. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kelly RB and Grote E: Protein targeting in the neuron. Annu Rev Neurosci. 16:95–127. 1993. View Article : Google Scholar : PubMed/NCBI | |
Alvarez J, Giuditta A and Koenig E: Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog Neurobiol. 62:1–62. 2000. View Article : Google Scholar : PubMed/NCBI | |
Satkauskas S and Bagnard D: Local protein synthesis in axonal growth cones: what is next? Cell Adh Migr. 1:179–184. 2007. View Article : Google Scholar : PubMed/NCBI | |
Giuditta A, Chun JT, Eyman M, Cefaliello C, Bruno AP and Crispino M: Local gene expression in axons and nerve endings: the glia-neuron unit. Physiol Rev. 88:515–555. 2008. View Article : Google Scholar : PubMed/NCBI | |
Twiss JL and Fainzilber M: Ribosomes in axons - scrounging from the neighbors? Trends Cell Biol. 19:236–243. 2009. View Article : Google Scholar : PubMed/NCBI | |
Perry RB and Fainzilber M: Local translation in neuronal processes-in vivo tests of a ‘heretical hypothesis’. Dev Neurobiol. Aug 8–2013.(Epub ahead of print). | |
Gumy LF, Katrukha EA, Kapitein LC and Hoogenraad CC: New insights into mRNA trafficking in axons. Dev Neurobiol. Aug 19–2013.(Epub ahead of print). | |
Willis DE, Xu M, Donnelly CJ, Tep C, Kendall M, Erenstheyn M, English AW, Schanen NC, Kirn-Safran CB, Yoon SO, Bassell GJ and Twiss JL: Axonal localization of transgene mRNA in mature PNS and CNS neurons. J Neurosci. 31:14481–14487. 2011. View Article : Google Scholar : PubMed/NCBI | |
Donnelly CJ, Willis DE, Xu M, Tep C, Jiang C, Yoo S, Schanen NC, Kirn-Safran CB, van Minnen J, English A, Yoon SO, Bassell GJ and Twiss JL: Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J. 30:4665–4677. 2011. View Article : Google Scholar : PubMed/NCBI | |
Donnelly CJ, Park M, Spillane M, Yoo S, Pacheco A, Gomes C, Vuppalanchi D, McDonald M, Kim HH, Merianda TT, Gallo G and Twiss JL: Axonally synthesized beta-actin and GAP-43 proteins support distinct modes of axonal growth. J Neurosci. 33:3311–3322. 2013. View Article : Google Scholar : PubMed/NCBI | |
Welshhans K and Bassell GJ: Netrin-1-induced local beta-actin synthesis and growth cone guidance requires zipcode binding protein 1. J Neurosci. 31:9800–9813. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jirikowski GF, Sanna PP and Bloom FE: mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophysial tract. Proc Natl Acad Sci USA. 87:7400–7404. 1990. View Article : Google Scholar : PubMed/NCBI | |
Trembleau A, Morales M and Bloom FE: Differential compartmentalization of vasopressin messenger RNA and neuropeptide within the rat hypothalamo-neurohypophysial axonal tracts: light and electron microscopic evidence. Neuroscience. 70:113–125. 1996. View Article : Google Scholar | |
Eng H, Lund K and Campenot RB: Synthesis of beta-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J Neurosci. 19:1–9. 1999.PubMed/NCBI | |
Lee SK and Hollenbeck PJ: Organization and translation of mRNA in sympathetic axons. J Cell Sci. 116:4467–4478. 2003. View Article : Google Scholar : PubMed/NCBI | |
Antar LN, Li C, Zhang H, Carroll RC and Bassell GJ: Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci. 32:37–48. 2006. View Article : Google Scholar : PubMed/NCBI | |
Litman P, Barg J, Rindzoonski L and Ginzburg I: Subcellular localization of tau mRNA in differentiating neuronal cell culture: implications for neuronal polarity. Neuron. 10:627–638. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wu KY, Hengst U, Cox LJ, Macosko EZ, Jeromin A, Urquhart ER and Jaffrey SR: Local translation of RhoA regulates growth cone collapse. Nature. 436:1020–1024. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bi J, Tsai NP, Lin YP, Loh HH and Wei LN: Axonal mRNA transport and localized translational regulation of kappa-opioid receptor in primary neurons of dorsal root ganglia. Proc Natl Acad Sci USA. 103:19919–19924. 2006. View Article : Google Scholar : PubMed/NCBI | |
Willis D, Li KW, Zheng JQ, Chang JH, Smit A, Kelly T, Merianda TT, Sylvester J, van Minnen J and Twiss JL: Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci. 25:778–791. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA and Jaffrey SR: Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol. 10:149–159. 2008. View Article : Google Scholar : PubMed/NCBI | |
Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT, Williams GG, Kendall M, Smith DS, Bassell GJ and Twiss JL: Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol. 178:965–980. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yoon BC, Zivraj KH and Holt CE: Local translation and mRNA trafficking in axon pathfinding. Results Probl Cell Differ. 48:269–288. 2009.PubMed/NCBI | |
Gumy LF, Yeo GS, Tung YC, Zivraj KH, Willis D, Coppola G, Lam BY, Twiss JL, Holt CE and Fawcett JW: Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA. 17:85–98. 2011. View Article : Google Scholar : PubMed/NCBI | |
Koenig E: Organized ribosome-containing structural domains in axons. Results Probl Cell Differ. 48:173–191. 2009.PubMed/NCBI | |
Tcherkezian J, Brittis PA, Thomas F, Roux PP and Flanagan JG: Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell. 141:632–644. 2010. View Article : Google Scholar : PubMed/NCBI | |
Court FA, Hendriks WT, Macgillavry HD, Alvarez J and van Minnen J: Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci. 28:11024–11029. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sotelo JR, Canclini L, Kun A, Sotelo-Silveira JR, Xu L, Wallrabe H, Calliari A, Rosso G, Cal K and Mercer JA: Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons. PLoS One. 8:e619052013. View Article : Google Scholar : PubMed/NCBI | |
Kapitein LC and Hoogenraad CC: Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci. 46:9–20. 2011. View Article : Google Scholar : PubMed/NCBI | |
Franco SJ and Müller U: Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron. 77:19–34. 2013. View Article : Google Scholar : PubMed/NCBI | |
Douen AG, Dong L, Vanance S, Munger R, Hogan MJ, Thompson CS and Hakim AM: Regulation of nestin expression after cortical ablation in adult rat brain. Brain Res. 1008:139–146. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brus M, Keller M and Lévy F: Temporal features of adult neurogenesis: differences and similarities across mammalian species. Front Neurosci. 7:1352013. View Article : Google Scholar : PubMed/NCBI | |
Kempermann G, Jessberger S, Steiner B and Kronenberg G: Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27:447–452. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pan YW, Storm DR and Xia Z: Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase. Neurobiol Learn Mem. 105:81–92. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ming GL, Wong ST, Henley J, Yuan XB, Song HJ, Spitzer NC and Poo MM: Adaptation in the chemotactic guidance of nerve growth cones. Nature. 417:411–418. 2002. View Article : Google Scholar : PubMed/NCBI | |
Piper M, Salih S, Weinl C, Holt CE and Harris WA: Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nat Neurosci. 8:179–186. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hörnberg H and Holt C: RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci. 7:812013.PubMed/NCBI | |
Charlesworth A, Meijer HA and de Moor CH: Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip Rev RNA. 4:437–461. 2013. View Article : Google Scholar | |
Richter JD: CPEB: a life in translation. Trends Biochem Sci. 32:279–285. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kundel M, Jones KJ, Shin CY and Wells DG: Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent beta-catenin mRNA translation in developing hippocampal neurons. J Neurosci. 29:13630–13639. 2009. View Article : Google Scholar | |
Michlewski G, Guil S, Semple CA and Cáceres JF: Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell. 32:383–393. 2008. View Article : Google Scholar : PubMed/NCBI | |
Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA and Sheng M: Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 65:373–384. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu XL, Zong R, Li Z, Biswas MH, Fang Z, Nelson DL and Gao FB: FXR1P but not FMRP regulates the levels of mammalian brain-specific microRNA-9 and microRNA-124. J Neurosci. 31:13705–13709. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hengst U, Cox LJ, Macosko EZ and Jaffrey SR: Functional and selective RNA interference in developing axons and growth cones. J Neurosci. 26:5727–5732. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aschrafi A, Schwechter AD, Mameza MG, Natera-Naranjo O, Gioio AE and Kaplan BB: microRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci. 28:12581–12590. 2008. View Article : Google Scholar : PubMed/NCBI | |
McKee AE, Minet E, Stern C, Riahi S, Stiles CD and Silver PA: A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically restricted expression in the developing mouse brain. BMC Dev Biol. 5:14–22. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gehman LT, Stoilov P, Maguire J, Damianov A, Lin CH, Shiue L, Ares M Jr, Mody I and Black DL: The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat Genet. 43:706–711. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hamada N, Ito H, Iwamoto I, Mizuno M, Morishita R, Inaguma Y, Kawamoto S, Tabata H and Nagata KI: Biochemical and morphological characterization of A2BP1 in neuronal tissue. J Neurosci Res. 91:1303–1311. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kusek G, Campbell M, Doyle F, Tenenbaum SA, Kiebler M and Temple S: Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression. Cell Stem Cell. 11:505–516. 2012. View Article : Google Scholar | |
Vessey JP, Amadei G, Burns SE, Kiebler MA, Kaplan DR and Miller FD: An asymmetrically localized Staufen2-dependent RNA complex regulates maintenance of mammalian neural stem cells. Cell Stem Cell. 11:517–528. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakamura M, Okano H, Blendy JA and Montell C: Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron. 13:67–81. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyama Y, Miyata T and Okano H: Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci. 22:139–153. 2000. View Article : Google Scholar : PubMed/NCBI | |
Maslov AY, Barone TA, Plunkett RJ and Pruitt SC: Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci. 24:1726–1733. 2004. View Article : Google Scholar : PubMed/NCBI | |
Okano H, Kawahara H, Toriya M, Nakao K, Shibata S and Imai T: Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res. 306:349–356. 2005. View Article : Google Scholar : PubMed/NCBI | |
Okamoto K, Nakatsukasa M, Alié A, Masuda Y, Agata K and Funayama N: The active stem cell specific expression of sponge Musashi homolog EflMsiA suggests its involvement in maintaining the stem cell state. Mech Dev. 129:24–37. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sutherland JM, McLaughlin EA, Hime GR and Siddall NA: The musashi family of RNA binding proteins: master regulators of multiple stem cell populations. Adv Exp Med Biol. 786:233–245. 2013. View Article : Google Scholar : PubMed/NCBI | |
Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, Nakafuku M and Okano H: The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol. 21:3888–3900. 2001. View Article : Google Scholar : PubMed/NCBI | |
Perez-Asensio FJ, Perpiñá U, Planas AM and Pozas E: Interleukin-10 regulates progenitor differentiation and modulates neurogenesis in adult brain. J Cell Sci. 126:4208–4219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Battelli C, Nikopoulos GN, Mitchell JG and Verdi JM: The RNA binding protein Musashi-1 regulates neural development through the translational repression of p21(WAF-1). Mol Cell Neurosci. 31:85–96. 2006. View Article : Google Scholar : PubMed/NCBI | |
Akamatsu W, Okano HJ, Osumi N, Inoue T, Nakamura S, Sakakibara S, Miura M, Matsuo N, Darnell RB and Okano H: Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc Natl Acad Sci USA. 96:9885–9890. 1999. View Article : Google Scholar : PubMed/NCBI | |
Akamatsu W, Fujihara H, Mitsuhashi T, Yano M, Shibata S, Hayakawa Y, Okano HJ, Sakakibara S, Takano H, Takano T, Takahashi T, Noda T and Okano H: The RNA binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci USA. 102:4625–4630. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kasashima K, Terashima K, Yamamoto K, Sakashita E and Sakamoto H: Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation. Genes Cells. 4:667–683. 1999. View Article : Google Scholar : PubMed/NCBI | |
Okano HJ and Darnell RB: A hierarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci. 17:3024–3037. 1997.PubMed/NCBI | |
Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, Henson J, Posner JB and Furneaux HM: HuD, a paraneoplastic encephalomyelitis antigen, contains RNA binding domains and is homologous to Elav and Sex-lethal. Cell. 67:325–333. 1991. View Article : Google Scholar : PubMed/NCBI | |
Darnell RB: RNA protein interaction in neurons. Annu Rev Neurosci. 36:243–270. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bolognani F, Merhege MA, Twiss J and Perrone-Bizzozero NI: Dendritic localization of the RNA-binding protein HuD in hippocampal neurons: association with polysomes and upregulation during contextual learning. Neurosci Lett. 371:152–157. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pascale A, Gusev PA, Amadio M, Dottorini T, Govoni S, Alkon DL and Quattrone A: Increase of the RNA-binding protein HuD and post-transcriptional upregulation of the GAP-43 gene during spatial memory. Proc Natl Acad Sci USA. 101:1217–1222. 2004. View Article : Google Scholar : PubMed/NCBI | |
Clayton GH, Perez GM, Smith RL and Owens GC: Expression of mRNA for the elav-like neural-specific RNA binding protein, HuD, during nervous system development. Brain Res Dev Brain Res. 109:271–280. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pascale A, Amadio M and Quattrone A: Defining a neuron: neuronal ELAV proteins. Cell Mol Life Sci. 65:128–140. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ratti A, Fallini C, Colombrita C, Pascale A, Laforenza U, Quattrone A and Silani V: Post-transcriptional regulation of neuro-oncological ventral antigen 1 by the neuronal RNA-binding proteins ELAV. J Biol Chem. 283:7531–7541. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M, Zeeberg BR, Kane D, Weinstein JN, Blume J and Darnell RB: Nova regulates brain-specific splicing to shape the synapse. Nat Genet. 37:844–852. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ule J and Darnell RB: RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr Opin Neurobiol. 16:102–110. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wakamatsu Y and Weston JA: Sequential expression and role of Hu RNA-binding proteins during neurogenesis. Development. 124:3449–3460. 1997.PubMed/NCBI | |
Quattrone A, Pascale A, Nogues X, Zhao W, Gusev P, Pacini A and Alkon DL: Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins. Proc Natl Acad Sci USA. 98:11668–11673. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bolognani F, Qiu S, Tanner DC, Paik J, Perrone-Bizzozero NI and Weeber EJ: Associative and spatial learning and memory deficits in transgenic mice overexpressing the RNA-binding protein HuD. Neurobiol Learn Mem. 87:635–643. 2007. View Article : Google Scholar : PubMed/NCBI | |
Smith CL, Afroz R, Bassell GJ, Furneaux HM, Perrone-Bizzozero NI and Burry RW: GAP-43 mRNA in growth cones is associated with HuD and ribosomes. J Neurobiol. 61:222–235. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lim CS and Alkon DL: Protein kinase C stimulates HuD-mediated mRNA stability and protein expression of neurotrophic factors and enhances dendritic maturation of hippocampal neurons in culture. Hippocampus. 22:2303–2319. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iijima T, Imai T, Kimura Y, Bernstein A, Okano HJ, Yuzaki M and Okano H: Hzf protein regulates dendritic localization and BDNF-induced translation of type 1 inositol 1,4,5 trisphosphate receptor mRNA. Proc Natl Acad Sci USA. 102:17190–17195. 2005. View Article : Google Scholar : PubMed/NCBI | |
Iijima T, Ogura H, Takatsuki K, Kawahara S, Wakabayashi K, Nakayama D, Fujioka M, Kimura Y, Bernstein A, Okano HJ, Kirino Y and Okano H: Impaired motor functions in mice lacking the RNA-binding protein Hzf. Neurosci Res. 58:183–189. 2007. View Article : Google Scholar : PubMed/NCBI | |
Miller S, Yasuda M, Coats JK, Jones Y, Martone ME and Mayford M: Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron. 36:507–519. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bassell GJ and Warren ST: Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 60:201–214. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pfeiffer BE and Huber KM: The state of synapses in fragile X syndrome. Neuroscientist. 15:549–567. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sidorov MS, Auerbach BD and Bear MF: Fragile X mental retardation protein and synaptic plasticity. Mol Brain. 6:152013. View Article : Google Scholar : PubMed/NCBI | |
Westmark CJ and Malter JS: FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 5:e522007. View Article : Google Scholar : PubMed/NCBI | |
Ascano M Jr, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, Langlois C, Munschauer M, Dewell S, Hafner M, Williams Z, Ohler U and Tuschl T: FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 492:382–386. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dictenberg JB, Swanger SA, Antar LN, Singer RH and Bassell GJ: A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell. 14:926–939. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ and Zhuo M: Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci. 25:7385–7392. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dölen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S and Bear MF: Correction of fragile X syndrome in mice. Neuron. 56:955–962. 2007.PubMed/NCBI | |
Iacoangeli A and Tiedge H: Translational control at the synapse: role of RNA regulators. Trends Biochem Sci. 38:47–55. 2013. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, Pfeiffer RL, Szulwach KE, Duan R, Barkho BZ, Li W, Liu C, Jin P and Zhao X: Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 6:e10008982010. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Allan AM, Zong R, Zhang L, Johnson EB, Schaller EG, Murthy AC, Goggin SL, Eisch AJ, Oostra BA, Nelson DL, Jin P and Zhao X: Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med. 17:559–565. 2011. View Article : Google Scholar : PubMed/NCBI | |
Krueger DD, Osterweil EK, Chen SP, Tye LD and Bear MF: Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA. 108:2587–2592. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stein JM, Bergman W, Fang Y, Davison L, Brensinger C, Robinson MB, Hecht NB and Abel T: Behavioral and neurochemical alterations in mice lacking the RNA-binding protein translin. J Neurosci. 26:2184–2196. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen-Plotkin AS, Lee VM and Trojanowski JQ: TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol. 6:211–220. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kwong LK, Uryu K, Trojanowski JQ and Lee VM: TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals. 16:41–51. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aparicio-Erriu IM and Prehn JH: Molecular mechanisms in amyotrophic lateral sclerosis: the role of angiogenin, a secreted RNase. Front Neurosci. 6:1672012.PubMed/NCBI | |
Ivanov P, Emara MM, Villen J, Gygi SP and Anderson P: Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell. 43:613–623. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tadesse H, Deschênes-Furry J, Boisvenue S and Côté J: KH-type splicing regulatory protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy. Hum Mol Genet. 17:506–524. 2008. View Article : Google Scholar : PubMed/NCBI | |
Glinka M, Herrmann T, Funk N, Havlicek S, Rossoll W, Winkler C and Sendtner M: The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons. Hum Mol Genet. 19:1951–1966. 2010. View Article : Google Scholar : PubMed/NCBI |