1
|
Seifert R, Strasser A, Schneider EH,
Neumann D, Dove S and Buschauer A: Molecular and cellular analysis
of human histamine receptor subtypes. Trends Pharmacol Sci.
34:33–58. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yoshizawa M, Tashiro M, Fukudo S, et al:
Increased brain histamine H1 receptor binding in patients with
anorexia nervosa. Biol Psychiatry. 65:329–335. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Booth RG, Fang L, Wilczynski A, et al:
Molecular determinants of ligand-directed signaling for the
histamine H1 receptor. Inflamm Res. 57(Suppl 1): S43–S44. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Swan C, Richards SA, Duroudier NP, Sayers
I and Hall IP: Alternative promoter use and splice variation in the
human histamine H1 receptor gene. Am J Respir Cell Mol Biol.
35:118–226. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oda T, Morikawa N, Saito Y, Masuho Y and
Matsumoto S: Molecular cloning and characterization of a novel type
of histamine receptor preferentially expressed in leukocytes. J
Biol Chem. 275:36781–36788. 2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Breunig E, Michel K, Zeller F, Seidl S,
Weyhern CW and Schemann M: Histamine excites neurones in the human
submucous plexus through activation of H1, H2, H3 and H4 receptors.
J Physiol. 583:731–742. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brew OB and Sullivan MH: Localisation of
mRNAs for diamine oxidase and histamine receptors H1 and H2, at the
feto-maternal interface of human pregnancy. Inflamm Res.
50:449–452. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Arisawa T, Tahara T, Ozaki K, et al:
Association between common genetic variant of HRH2 and
gastric cancer risk. Int J Oncol. 41:497–503. 2012.
|
9
|
Lefranc F, Yeaton P, Brotchi J and Kiss R:
Cimetidine, an unexpected anti-tumor agent, and its potential for
the treatment of glioblastoma. Int J Oncol. 28:1021–1030.
2006.PubMed/NCBI
|
10
|
Davio C, Baldi A, Mladovan A, Cricco G,
Fitzsimons C and Bergoc RR: Expression of histamine receptors in
different cell lines derived from mammary gland and human breast
carcinomas. Inflamm Res. 44(Suppl 1): S70–S71. 1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jiang CG, Liu FR, Yu M, Li JB and Xu HM:
Cimetidine induces apoptosis in gastric cancer cells in
vitro and inhibits tumor growth in vivo. Oncol Rep.
23:693–700. 2010.PubMed/NCBI
|
12
|
Fukuda M, Tanaka S, Suzuki S, Kusama K,
Kaneko T and Sakashita H: Cimetidine induces apoptosis of human
salivary gland tumor cells. Oncol Rep. 17:673–678. 2007.PubMed/NCBI
|
13
|
Yang L, Luo Y and Wei J: Integrative
genomic analyses on Ikaros and its expression related to solid
cancer prognosis. Oncol Rep. 24:571–577. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang L, Luo Y, Wei J and He S: Integrative
genomic analyses on IL28RA, the common receptor of interferon-λ1,
-λ2 and -λ3. Int J Mol Med. 25:807–812. 2010.PubMed/NCBI
|
15
|
Yang L, Wei J and He S: Integrative
genomic analyses on interferon-λs and their roles in cancer
prediction. Int J Mol Med. 25:299–304. 2010.
|
16
|
Thompson JD, Gibson TJ, Plewniak F,
Jeanmougin F and Higgins DG: The CLUSTAL-X windows interface:
flexible strategies for multiple sequence alignment aided by
quality analysis tools. Nucleic Acids Res. 15:4876–4882. 1997.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Guindon S, Lethiec F, Duroux P and Gascuel
O: PHYML Online - a web server for fast maximum likelihood-based
phylogenetic inference. Nucleic Acids Res. 33:W557–W559. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kumar S, Tamura K and Nei M: MEGA3:
Integrated software for molecular evolutionary genetics analysis
and sequence alignment. Brief Bioinform. 5:150–163. 2004.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang Z: PAML: a program package for
phylogenetic analysis by maximum likelihood. Comput Appl Biosci.
13:555–556. 1997.PubMed/NCBI
|
20
|
Yang Z, Nielsen R, Goldman N and Pedersen
AM: Codon-substitution models for heterogeneous selection pressure
at amino acid sites. Genetics. 155:431–449. 2000.PubMed/NCBI
|
21
|
Yu H, Yuan J, Xiao C and Qin Y:
Integrative genomic analyses of recepteur d’origine nantais and its
prognostic value in cancer. Int J Mol Med. 31:1248–1254. 2013.
|
22
|
Katoh Y and Katoh M: Integrative genomic
analyses on GLI1: positive regulation of GLI1 by
Hedgehog-GLI, TGFβ-Smads, and RTK-PI3K-AKT signals, and negative
regulation of GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals.
Int J Oncol. 35:187–192. 2009.
|
23
|
Katoh M and Katoh M: Integrative genomic
analyses of WNT11: transcriptional mechanisms based on
canonical WNT signals and GATA transcription factors signaling. Int
J Mol Med. 24:247–251. 2009.
|
24
|
Katoh M and Katoh M: Transcriptional
mechanisms of WNT5A based on NF-κB, Hedgehog, TGFβ, and
Notch signaling cascades. Int J Mol Med. 23:763–769. 2009.
|
25
|
Katoh M and Katoh M: Integrative genomic
analyses of ZEB2: Transcriptional regulation of ZEB2 based
on SMADs, ETS1, HIF1α, POU/OCT, and NF-κB. Int J Oncol.
34:1737–1742. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chalifa-Caspi V, Yanai I, Ophir R, et al:
GeneAnnot: comprehensive two-way linking between oligonucleotide
array probesets and GeneCards genes. Bioinformatics. 20:1457–1458.
2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Parkinson H, Sarkans U, Shojatalab M, et
al: ArrayExpress - a public repository for microarray gene
expression data at the EBI. Nucleic Acids Res. 33:D553–D555. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kolker E, Higdon R, Morgan P, et al:
SPIRE: Systematic protein investigative research environment. J
Proteomics. 75:122–126. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kolker E, Higdon R, Haynes W, et al:
MOPED: Model Organism Protein Expression Database. Nucleic Acids
Res. 40:D1093–D1099. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mizuno H, Kitada K, Nakai K and Sarai A:
PrognoScan: a new database for meta-analysis of the prognostic
value of genes. BMC Med Genomics. 2:182009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Xu TR, Yang Y, Ward R, Gao L and Liu Y:
Orexin receptors: multi-functional therapeutic targets for sleeping
disorders, eating disorders, drug addiction, cancers and other
physiological disorders. Cell Signal. 25:2413–2423. 2013.
View Article : Google Scholar
|
32
|
Medina VA and Rivera ES: Histamine
receptors and cancer pharmacology. Br J Pharmacol. 61:755–767.
2010. View Article : Google Scholar
|
33
|
Blaya B, Nicolau-Galmés F, Jangi SM, et
al: Histamine and histamine receptor antagonists in cancer biology.
Inflamm Allergy Drug Targets. 9:146–157. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Schlossmacher G, Stevens A and White A:
Glucocorticoid receptor-mediated apoptosis: mechanisms of
resistance in cancer cells. J Endocrinol. 211:17–25. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Feng Y, Bai X, Yang Q, Wu H and Wang D:
Downregulation of 15-lipoxygenase 2 by glucocorticoid receptor in
prostate cancer cells. Int J Oncol. 36:1541–1549. 2010.PubMed/NCBI
|
36
|
Jang JH, Woo SM, Um HJ, et al: RU486, a
glucocorticoid receptor antagonist, induces apoptosis in U937 human
lymphoma cells through reduction in mitochondrial membrane
potential and activation of p38 MAPK. Oncol Rep. 30:506–512.
2013.
|
37
|
Koptyra M, Gupta S, Talati P and
Nevalainen MT: Signal transducer and activator of transcription
5a/b: biomarker and therapeutic target in prostate and breast
cancer. Int J Biochem Cell Biol. 43:1417–1421. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hou L, Xu B, Mohankumar KM, Goffin V,
Perry JK, Lobie PE and Liu DX: The prolactin receptor mediates
HOXA1-stimulated oncogenicity in mammary carcinoma cells. Int J
Oncol. 41:2285–2295. 2012.PubMed/NCBI
|
39
|
Haeri M, Li Y, Li Y, Li Q, Spaner DE and
Ben-David Y: Insertional activation of myb by F-MuLV in SCID mice
induces myeloid leukemia. Int J Oncol. 43:169–176. 2013.PubMed/NCBI
|
40
|
Zhang J, Luo N, Luo Y, Peng Z, Zhang T and
Li S: microRNA-150 inhibits human CD133-positive liver cancer stem
cells through negative regulation of the transcription factor
c-Myb. Int J Oncol. 40:747–756. 2012.PubMed/NCBI
|
41
|
Kim WJ, Kim EJ, Kim SK, et al: Predictive
value of progression-related gene classifier in primary non-muscle
invasive bladder cancer. Mol Cancer. 9:32010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lee JS, Leem SH, Lee SY, et al: Expression
signature of E2F1 and its associated genes predict superficial to
invasive progression of bladder tumors. J Clin Oncol. 28:2660–2667.
2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hummel M, Bentink S, Berger H, et al:
Molecular Mechanisms in Malignant Lymphomas Network Project of the
Deutsche Krebshilfe. A biologic definition of Burkitt’s lymphoma
from transcriptional and genomic profiling. N Engl J Med.
354:2419–2430. 2006.PubMed/NCBI
|
44
|
Zhan F, Huang Y, Colla S, et al: The
molecular classification of multiple myeloma. Blood. 108:2020–2028.
2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Phillips HS, Kharbanda S, Chen R, et al:
Molecular subclasses of high-grade glioma predict prognosis,
delineate a pattern of disease progression, and resemble stages in
neurogenesis. Cancer Cell. 9:157–173. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bos PD, Zhang XH, Nadal C, et al: Genes
that mediate breast cancer metastasis to the brain. Nature.
459:1005–1009. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Loi S, Haibe-Kains B, Majjaj S, et al:
PIK3CA mutations associated with gene signature of low mTORC1
signaling and better outcomes in estrogen receptor-positive breast
cancer. Proc Natl Acad Sci USA. 107:10208–10213. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chanrion M, Negre V, Fontaine H, et al: A
gene expression signature that can predict the recurrence of
tamoxifen-treated primary breast cancer. Clin Cancer Res.
14:1744–1752. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pawitan Y, Bjöhle J, Amler L, et al: Gene
expression profiling spares early breast cancer patients from
adjuvant therapy: derived and validated in two population-based
cohorts. Breast Cancer Res. 7:R953–R964. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Miller LD, Smeds J, George J, et al: An
expression signature for p53 status in human breast cancer predicts
mutation status, transcriptional effects, and patient survival.
Proc Natl Acad Sci USA. 102:13550–13555. 2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Smith JJ, Deane NG, Wu F, et al:
Experimentally derived metastasis gene expression profile predicts
recurrence and death in patients with colon cancer.
Gastroenterology. 138:958–968. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Laurent C, Valet F, Planque N, et al: High
PTP4A3 phosphatase expression correlates with metastatic risk in
uveal melanoma patients. Cancer Res. 71:666–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Director’s Challenge Consortium for the
Molecular Classification of Lung Adenocarcinoma. Shedden K, Taylor
JM, et al: Gene expression-based survival prediction in lung
adenocarcinoma: a multi-site, blinded validation study. Nat Med.
14:822–827. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Tomida S, Takeuchi T, Shimada Y, et al:
Relapse-related molecular signature in lung adenocarcinomas
identifies patients with dismal prognosis. J Clin Oncol.
27:2793–2799. 2009. View Article : Google Scholar : PubMed/NCBI
|
55
|
Okayama H, Kohno T, Ishii Y, et al:
Identification of genes upregulated in ALK-positive and
EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res.
72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Lee ES, Son DS, Kim SH, et al: Prediction
of recurrence-free survival in postoperative non-small cell lung
cancer patients by using an integrated model of clinical
information and gene expression. Clin Cancer Res. 14:7397–7404.
2008. View Article : Google Scholar : PubMed/NCBI
|
57
|
Yoshihara K, Tajima A, Yahata T, et al:
Gene expression profile for predicting survival in advanced-stage
serous ovarian cancer across two independent datasets. PLoS One.
5:e96152010. View Article : Google Scholar : PubMed/NCBI
|
58
|
Gobble RM, Qin LX, Brill ER, et al:
Expression profiling of liposarcoma yields a multigene predictor of
patient outcome and identifies genes that contribute to
liposarcomagenesis. Cancer Res. 71:2697–2705. 2011. View Article : Google Scholar : PubMed/NCBI
|