1
|
Ljungberg B, Hanbury DC, Kuczyk MA, et al:
Renal cell carcinoma guideline. Eur Urol. 51:1502–1510. 2007.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang Z, Wondergem B and Dykema K: A
comprehensive study of progressive cytogenetic alterations in clear
cell renal cell carcinoma and a new model for ccRCC tumorigenesis
and progression. Adv Bioinformatics. 2010:4283252010. View Article : Google Scholar
|
3
|
Lam JS, Leppert JT, Figlin RA and
Belldegrun AS: Surveillance following radical or partial
nephrectomy for renal cell carcinoma. Curr Urol Rep. 6:7–18. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Huang Y, Dai Y, Yang J, et al: Microarray
analysis of microRNA expression in renal clear cell carcinoma. Eur
J Surg Oncol. 35:1119–1123. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Figlin RA, Pierce WC, Kaboo R, et al:
Treatment of metastatic renal cell carcinoma with nephrectomy,
interleukin-2 and cytokine-primed or CD8 (+) selected tumor
infiltrating lymphocytes from primary tumor. J Urol. 158:740–745.
1997.
|
6
|
Nelson WJ and Nusse R: Convergence of Wnt,
β-catenin, and cadherin pathways. Science. 303:1483–1487. 2004.
|
7
|
Capurro MI, Xiang YY, Lobe C and Filmus J:
Glypican-3 promotes the growth of hepatocellular carcinoma by
stimulating canonical Wnt signaling. Cancer Res. 65:6245–6254.
2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rask K, Nilsson A, Brännström M, et al:
Wnt-signalling pathway in ovarian epithelial tumours: increased
expression of β-catenin and GSK3β. Br J Cancer. 89:1298–1304.
2003.
|
9
|
Chien AJ, Moore EC, Lonsdorf AS, et al:
Activated Wnt/β-catenin signaling in melanoma is associated with
decreased proliferation in patient tumors and a murine melanoma
model. Proc Natl Acad Sci USA. 106:1193–1198. 2009.
|
10
|
Gilbertson RJ: Medulloblastoma: signalling
a change in treatment. Lancet Oncol. 5:209–218. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Banumathy G and Cairns P: Signaling
pathways in renal cell carcinoma. Cancer Biol Ther. 10:658–664.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Logan CY and Nusse R: The Wnt signaling
pathway in development and disease. Annu Rev Cell Dev Biol.
20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fang D, Hawke D, Zheng Y, et al:
Phosphorylation of β-catenin by AKT promotes β-catenin
transcriptional activity. J Biol Chem. 282:11221–11229. 2007.
|
14
|
Jho EH, Zhang T, Domon C, Joo CK, Freund
JN and Costantini F: Wnt/β-catenin/Tcf signaling induces the
transcription of Axin2, a negative regulator of the signaling
pathway. Mol Cell Biol. 22:1172–1183. 2002.
|
15
|
Hirata H, Hinoda Y, Majid S, et al:
DICKKOPF-4 activates the noncanonical c-Jun-NH2 kinase signaling
pathway while inhibiting the Wnt-canonical pathway in human renal
cell carcinoma. Cancer. 117:1649–1660. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pfaff E, Becker S, Günther A and
Königshoff M: Dickkopf proteins influence lung epithelial cell
proliferation in idiopathic pulmonary fibrosis. Eur Respir J.
37:79–87. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pendás-Franco N, García J, Peña C, et al:
DICKKOPF-4 is induced by TCF/β-catenin and upregulated in human
colon cancer, promotes tumour cell invasion and angiogenesis and is
repressed by 1α, 25-dihydroxyvitamin D3. Oncogene. 27:4467–4477.
2008.PubMed/NCBI
|
18
|
Katoh Y and Katoh M: Comparative genomics
on DKK2 and DKK4 orthologs. Int J Mol Med. 16:477–481.
2005.PubMed/NCBI
|
19
|
Peruzzi B, Athauda G and Bottaro DP: The
von Hippel-Lindau tumor suppressor gene product represses oncogenic
β-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci
USA. 103:14531–14536. 2006.PubMed/NCBI
|
20
|
Kim YS, Kang YK, Kim JB, Han S, Kim KI and
Paik SR: β-catenin expression and mutational analysis in renal cell
carcinomas. Pathol Int. 50:725–730. 2000.
|
21
|
Tanimoto K, Makino Y, Pereira T and
Poellinger L: Mechanism of regulation of the hypoxia-inducible
factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO
J. 19:4298–4309. 2000.
|
22
|
Ma X, Yang K, Lindblad P, Egevad L and
Hemminki K: VHL gene alterations in renal cell carcinoma patients:
novel hotspot or founder mutations and linkage disequilibrium.
Oncogene. 20:5393–5400. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Patel PH, Chadalavada RS, Chaganti R and
Motzer RJ: Targeting von Hippel-Lindau pathway in renal cell
carcinoma. Clin Cancer Res. 12:7215–7220. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Matsui A, Yamaguchi T, Maekawa S, et al:
DICKKOPF-4 and -2 genes are upregulated in human colorectal cancer.
Cancer Sci. 100:1923–1930. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fatima S, Lee N, Tsang F, et al: Dickkopf
4 (DKK4) acts on Wnt/β-catenin pathway by influencing β-catenin in
hepatocellular carcinoma. Oncogene. 31:4233–4244. 2012.
|
26
|
Krupnik VE, Sharp JD, Jiang C, et al:
Functional and structural diversity of the human Dickkopf gene
family. Gene. 238:301–313. 1999. View Article : Google Scholar : PubMed/NCBI
|
27
|
Aravind L and Koonin EV: A colipase fold
in the carboxy-terminal domain of the Wnt antagonists-the
Dickkopfs. Curr Biol. 8:R477–R478. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
van Tilbeurgh H, Bezzine S, Cambillau C,
Verger R and Carrière F: Colipase: structure and interaction with
pancreatic lipase. Biochim Biophys Acta. 1441:173–184.
1999.PubMed/NCBI
|
29
|
Bazzi H, Fantauzzo KA, Richardson GD,
Jahoda CA and Christiano AM: The Wnt inhibitor, Dickkopf 4, is
induced by canonical Wnt signaling during ectodermal appendage
morphogenesis. Dev Biol. 305:498–507. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Veeck J, Bektas N, Hartmann A, et al: Wnt
signalling in human breast cancer: expression of the putative Wnt
inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter
hypermethylation in mammary tumours. Breast Cancer Res. 10:R822008.
View Article : Google Scholar
|
31
|
Zenzmaier C, Untergasser G, Hermann M,
Dirnhofer S, Sampson N and Berger P: Dysregulation of Dkk-3
expression in benign and malignant prostatic tissue. Prostate.
68:540–547. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Baehs S, Herbst A, Thieme SE, et al:
Dickkopf-4 is frequently down-regulated and inhibits growth of
colorectal cancer cells. Cancer Lett. 276:152–159. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Morais C, Johnson DW and Gobe G: The
VHL-HIF signaling in renal cell carcinoma: promises and pitfalls.
Emerging Research and Treatments in Renal Cell Carcinoma. Amato RJ:
InTech Publishers; Croatia: pp. 57–82. 2011
|
34
|
Linehan WM, Rubin JS and Bottaro DP: VHL
loss of function and its impact on oncogenic signaling networks in
clear cell renal cell carcinoma. Int J Biochem Cell Biol.
41:753–756. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mao B, Wu W, Davidson G, et al: Kremen
proteins are Dickkopf receptors that regulate Wnt/beta-catenin
signalling. Nature. 417:664–667. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Baldin V, Lukas J, Marcote M, Pagano M and
Draetta G: Cyclin D1 is a nuclear protein required for cell cycle
progression in G1. Genes Dev. 7:812–821. 1993. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu JF, Shao JC, Wang DB, Qin R and Zhang
H: Expression and significance of cell cycle regulators in gastric
carcinoma. Ai Zheng. 24:175–179. 2005.PubMed/NCBI
|
38
|
Spencer CA and Groudine M: Control of
c-myc regulation in normal and neoplastic cells. Adv Cancer Res.
56:1–48. 1991. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hirata H, Hinoda Y, Ueno K, Nakajima K,
Ishii N and Dahiya R: MicroRNA-1826 directly targets β-catenin
(CTNNB1) and MEK1 (MAP2K1) in VHL-inactivated renal cancer.
Carcinogenesis. 33:501–508. 2012.PubMed/NCBI
|
40
|
Chen L, Han L, Zhang K, et al: VHL
regulates the effects of miR-23b on glioma survival and invasion
via suppression of HIF-1α/VEGF and β-catenin/Tcf-4 signaling. Neuro
Oncol. 14:1026–1036. 2012.PubMed/NCBI
|