1
|
Pederson T and Aebi U: Actin in the
nucleus: what form and what for? J Struct Biol. 140:3–9. 2002.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Pederson T and Aebi U: Nuclear actin
extends, with no contraction in sight. Mol Biol Cell. 16:5055–5060.
2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
McDonald D, Carrero G, Andrin C, de Vries
G and Hendzel MJ: Nucleoplasmic β-actin exists in a dynamic
equilibrium between low-mobility polymeric species and rapidly
diffusing populations. J Cell Biol. 172:541–552. 2006.
|
4
|
Jockusch BM, Schoenenberger CA, Stetefeld
J and Aebi U: Tracking down the different forms of nuclear actin.
Trends Cell Biol. 16:391–396. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ye J, Zhao J, Hoffmann-Rohrer U and Grummt
I: Nuclear myosin I acts in concert with polymeric actin to drive
RNA polymerase I transcription. Genes Dev. 22:322–330. 2008.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Ferrai C, Naum-Onganía G, Longobardi E, et
al: Induction of HoxB transcription by retinoic acid requires actin
polymerization. Mol Biol Cell. 20:3543–3551. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gieni RS and Hendzel MJ: Actin dynamics
and functions in the interphase nucleus: moving toward an
understanding of nuclear polymeric actin. Biochem Cell Biol.
87:283–306. 2009.PubMed/NCBI
|
8
|
Belin BJ, Cimini BA, Blackburn EH and
Mullins RD: Visualization of actin filaments and monomers in
somatic cell nuclei. Mol Biol Cell. 24:982–994. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Grzanka D, Gagat M and Izdebska M: Actin
is required for cellular death. Acta Histochem. 115:775–782. 2013.
View Article : Google Scholar
|
10
|
Bettinger BT, Gilbert DM and Amberg DC:
Actin up in the nucleus. Nat Rev Mol Cell Biol. 5:410–415. 2004.
View Article : Google Scholar
|
11
|
Izdebska M, Gagat M, Grzanka D and Grzanka
A: Ultrastructural localization of F-actin using phalloidin and
quantum dots in HL-60 promyelocytic leukemia cell line after cell
death induction by arsenic trioxide. Acta Histochem. 115:487–495.
2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Castano E, Philimonenko VV, Kahle M, et
al: Actin complexes in the cell nucleus: new stones in an old
field. Histochem Cell Biol. 133:607–626. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
De Lanerolle P and Serebryannyy L: Nuclear
actin and myosins: life without filaments. Nat Cell Biol.
13:1282–1288. 2011.PubMed/NCBI
|
14
|
Fomproix N and Percipalle P: An
actin-myosin complex on actively transcribing genes. Exp Cell Res.
294:140–148. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gedge LJ, Morrison EE, Blair GE and Walker
JH: Nuclear actin is partially associated with Cajal bodies in
human cells in culture and relocates to the nuclear periphery after
infection of cells by adenovirus 5. Exp Cell Res. 303:229–239.
2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Saitoh N, Spahr CS, Patterson SD, Bubulya
P, Neuwald AF and Spector DL: Proteomic analysis of interchromatin
granule clusters. Mol Biol Cell. 15:3876–3890. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Olave IA, Reck-Peterson SL and Crabtree
GR: Nuclear actin and actin-related proteins in chromatin
remodeling. Annu Rev Biochem. 71:755–781. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Blessing CA, Ugrinova GT and Goodson HV:
Actin and ARPs: action in the nucleus. Trends Cell Biol.
14:435–442. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen M and Shen X: Nuclear actin and
actin-related proteins in chromatin dynamics. Curr Opin Cell Biol.
19:326–330. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Visa N and Percipalle P: Nuclear functions
of actin. Cold Spring Harb Perspect Biol. 2:a0006202010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kapoor P, Chen M, Winkler DD, Luger K and
Shen X: Evidence for monomeric actin function in INO80 chromatin
remodeling. Nat Struct Mol Biol. 20:426–432. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Krauss SW, Heald R, Lee G, Nunomura W,
Gimm JA, Mohandas N and Chasis JA: Two distinct domains of protein
4.1 critical for assembly of functional nuclei in vitro. J Biol
Chem. 277:44339–44346. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Krauss SW, Chen C, Penman S and Heald R:
Nuclear actin and protein 4.1: essential interactions during
nuclear assembly in vitro. Proc Natl Acad Sci USA. 100:10752–10757.
2003. View Article : Google Scholar : PubMed/NCBI
|
24
|
Vartiainen MK, Guettler S, Larijani B and
Treisman R: Nuclear actin regulates dynamic subcellular
localization and activity of the SRF cofactor MAL. Science.
316:1749–1752. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zimmer C and Fabre E: Principles of
chromosomal organization: lessons from yeast. J Cell Biol.
192:723–733. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Spilianakis CG, Lalioti MD, Town T, Lee GR
and Flavell RA: Interchromosomal associations between alternatively
expressed loci. Nature. 435:637–645. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schneider R and Grosschedl R: Dynamics and
interplay of nuclear architecture, genome organization, and gene
expression. Genes Dev. 21:3027–3043. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
De Belle I, Cai S and Kohwi-Shigematsu T:
The genomic sequences bound to special AT-rich sequence-binding
protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated
with the nuclear matrix at the bases of the chromatin loops. J Cell
Biol. 141:335–348. 1998.
|
29
|
Cai S, Lee CC and Kohwi-Shigematsu T:
SATB1 packages densely looped, transcriptionally active chromatin
for coordinated expression of cytokine genes. Nat Genet.
38:1278–1288. 2006. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Gotzmann J, Meissner M and Gerner C: The
fate of the nuclear matrix-associated-region-binding protein SATB1
during apoptosis. Cell Death Differ. 7:425–438. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Galande S, Dickinson LA, Mian IS, Sikorska
M and Kohwi-Shigematsu T: SATB1 cleavage by caspase 6 disrupts PDZ
domain-mediated dimerization, causing detachment from chromatin
early in T-cell apoptosis. Mol Cell Biol. 21:5591–5604. 2001.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Mir R, Pradhan SJ and Galande S: Chromatin
organizer SATB1 as a novel molecular target for cancer therapy.
Curr Drug Targets. 13:1603–1615. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Notani D, Ramanujam PL, Kumar PP,
Gottimukkala KP, Kumar-Sinha C and Galande S: N-terminal PDZ-like
domain of chromatin organizer SATB1 contributes towards its
function as transcription regulator. J Biosci. 36:461–469. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu QY, Ribecco-Lutkiewicz M, Carson C, et
al: Mapping the initial DNA breaks in apoptotic Jurkat cells using
ligation-mediated PCR. Cell Death Differ. 10:278–289. 2003.
View Article : Google Scholar : PubMed/NCBI
|
35
|
De Lanerolle P, Johnson T and Hofmann WA:
Actin and myosin I in the nucleus: what next? Nat Struct Mol Biol.
12:742–746. 2005.PubMed/NCBI
|
36
|
Sjölinder M, Björk P, Söderberg E, Sabri
N, Farrants AK and Visa N: The growing pre-mRNA recruits actin and
chromatin-modifying factors to transcriptionally active genes.
Genes Dev. 19:1871–1884. 2005.PubMed/NCBI
|
37
|
Hofmann WA: Cell and molecular biology of
nuclear actin. Int Rev Cell Mol Biol. 273:219–263. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Louvet E and Percipalle P: Transcriptional
control of gene expression by actin and myosin. Int Rev Cell Mol
Biol. 272:107–147. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hofmann WA, Stojiljkovic L, Fuchsova B, et
al: Actin is part of pre-initiation complexes and is necessary for
transcription by RNA polymerase II. Nat Cell Biol. 6:1094–1101.
2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Qi T, Tang W, Wang L, Zhai L, Guo L and
Zeng X: G-actin participates in RNA polymerase II-dependent
transcription elongation by recruiting positive transcription
elongation factor b (P-TEFb). J Biol Chem. 286:15171–15181. 2011.
View Article : Google Scholar
|
41
|
Grzanka A, Grzanka D and Orlikowska M:
Fluorescence and ultrastructural localization of actin distribution
patterns in the nucleus of HL-60 and K-562 cell lines treated with
cytostatic drugs. Oncol Rep. 11:765–770. 2004.PubMed/NCBI
|
42
|
Grzanka D, Domaniewski J and Grzanka A:
Effect of doxorubicin on actin reorganization in Chinese hamster
ovary cells. Neoplasma. 52:46–51. 2005.PubMed/NCBI
|
43
|
Grzanka D, Marszałek A, Gagat M, Izdebska
M, Gackowska L and Grzanka A: Doxorubicin-induced F-actin
reorganization in cofilin-1 (nonmuscle) down-regulated CHO AA8
cells. Folia Histochem Cytobiol. 48:377–386. 2010.PubMed/NCBI
|
44
|
Izdebska M, Grzanka D, Gagat M, Gackowska
L and Grzanka A: The effect of G-CSF on F-actin reorganization in
HL-60 and K562 cell lines. Oncol Rep. 28:2138–2148. 2012.PubMed/NCBI
|
45
|
Ou H, Shen YH, Utama B, Wang J, Wang X,
Coselli J and Wang XL: Effect of nuclear actin on endothelial
nitric oxide synthase expression. Arterioscler Thromb Vasc Biol.
25:2509–2514. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang M-X, Zhang C, Shen YH, et al: Effect
of 27nt small RNA on endothelial nitric-oxide synthase expression.
Mol Biol Cell. 19:3997–4005. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Rando OJ, Zhao K, Janmey P and Crabtree
GR: Phosphatidylinositol-dependent actin filament binding by the
SWI/SNF-like BAF chromatin remodeling complex. Proc Natl Acad Sci
USA. 99:2824–2829. 2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Song Z, Wang M, Wang X, Pan X, Liu W, Hao
S and Zeng X: Nuclear actin is involved in the regulation of CSF1
gene transcription in a chromatin required, BRG1 independent
manner. J Cell Biochem. 102:403–411. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhao K, Wang W, Rando OJ, Xue Y, Swiderek
K, Kuo A and Crabtree GR: Rapid and phosphoinositol-dependent
binding of the SWI/SNF-like BAF complex to chromatin after T
lymphocyte receptor signaling. Cell. 95:625–636. 1998. View Article : Google Scholar : PubMed/NCBI
|
50
|
Percipalle P, Zhao J, Pope B, Weeds A,
Lindberg U and Daneholt B: Actin bound to the heterogeneous nuclear
ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from
the gene to polysomes. J Cell Biol. 153:229–236. 2001. View Article : Google Scholar : PubMed/NCBI
|
51
|
Xu YZ, Thuraisingam T, Marino R and
Radzioch D: Recruitment of SWI/SNF complex is required for
transcriptional activation of the SLC11A1 gene during macrophage
differentiation of HL-60 cells. J Biol Chem. 286:12839–12849. 2011.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Xu T, Wu M, Feng J, Lin X and Gu Z:
RhoA/Rho kinase signaling regulates transforming growth
factor-β1-induced chondrogenesis and actin organization of
synovium-derived mesenchymal stem cells through interaction with
the Smad pathway. Int J Mol Med. 30:1119–1125. 2012.
|
53
|
Aoyama K, Yuki R, Horiike Y, et al:
Formation of long and winding nuclear F-actin bundles by nuclear
c-Abl tyrosine kinase. Exp Cell Res. 319:3251–3268. 2013.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Zheng B, Han M, Bernier M and Wen J:
Nuclear actin and actin-binding proteins in the regulation of
transcription and gene expression. FEBS J. 276:2669–2685. 2009.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Dundr M, Ospina JK, Sung M-H, et al:
Actin-dependent intranuclear repositioning of an active gene locus
in vivo. J Cell Biol. 179:1095–1103. 2007. View Article : Google Scholar : PubMed/NCBI
|
56
|
Gonsior SM, Platz S, Buchmeier S, Scheer
U, Jockusch BM and Hinssen H: Conformational difference between
nuclear and cytoplasmic actin as detected by a monoclonal antibody.
J Cell Sci. 112(Pt 6): 797–809. 1999.PubMed/NCBI
|
57
|
Schoenenberger CA, Buchmeier S, Boerries
M, Sütterlin R, Aebi U and Jockusch BM: Conformation-specific
antibodies reveal distinct actin structures in the nucleus and the
cytoplasm. J Struct Biol. 152:157–168. 2005. View Article : Google Scholar : PubMed/NCBI
|
58
|
Hofmann WA, Arduini A, Nicol SM, Camacho
CJ, Lessard JL, Fuller-Pace FV and de Lanerolle P: SUMOylation of
nuclear actin. J Cell Biol. 186:193–200. 2009. View Article : Google Scholar
|
59
|
Ludérus ME, de Graaf A, Mattia E, den
Blaauwen JL, Grande MA, de Jong L and van Driel R: Binding of
matrix attachment regions to lamin B1. Cell. 70:949–959. 1992.
|
60
|
Ludérus ME, den Blaauwen JL, de Smit OJ,
Compton DA and van Driel R: Binding of matrix attachment regions to
lamin polymers involves single-stranded regions and the minor
groove. Mol Cell Biol. 14:6297–6305. 1994.PubMed/NCBI
|
61
|
Liu J, Bramblett D, Zhu Q, Lozano M,
Kobayashi R, Ross SR and Dudley JP: The matrix attachment
region-binding protein SATB1 participates in negative regulation of
tissue-specific gene expression. Mol Cell Biol. 17:5275–5287.
1997.PubMed/NCBI
|
62
|
Kaplan MH, Zong RT, Herrscher RF,
Scheuermann RH and Tucker PW: Transcriptional activation by a
matrix associating region-binding protein. contextual requirements
for the function of bright. J Biol Chem. 276:21325–21330. 2001.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Dobreva G, Dambacher J and Grosschedl R:
SUMO modification of a novel MAR-binding protein, SATB2, modulates
immunoglobulin mu gene expression. Genes Dev. 17:3048–3061. 2003.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Kaul-Ghanekar R, Jalota A, Pavithra L,
Tucker P and Chattopadhyay S: SMAR1 and Cux/CDP modulate chromatin
and act as negative regulators of the TCRbeta enhancer (Ebeta).
Nucleic Acids Res. 32:4862–4875. 2004. View Article : Google Scholar : PubMed/NCBI
|
65
|
Han HJ, Russo J, Kohwi Y and
Kohwi-Shigematsu T: SATB1 reprogrammes gene expression to promote
breast tumour growth and metastasis. Nature. 452:187–193. 2008.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Pavan Kumar P, Purbey PK, Sinha CK, Notani
D, Limaye A, Jayani RS and Galande S: Phosphorylation of SATB1, a
global gene regulator, acts as a molecular switch regulating its
transcriptional activity in vivo. Mol Cell. 22:231–243.
2006.PubMed/NCBI
|
67
|
Alvarez JD, Yasui DH, Niida H, Joh T, Loh
DY and Kohwi-Shigematsu T: The MAR-binding protein SATB1
orchestrates temporal and spatial expression of multiple genes
during T-cell development. Genes Dev. 14:521–535. 2000.PubMed/NCBI
|
68
|
Yasui D, Miyano M, Cai S, Varga-Weisz P
and Kohwi-Shigematsu T: SATB1 targets chromatin remodelling to
regulate genes over long distances. Nature. 419:641–645. 2002.
View Article : Google Scholar : PubMed/NCBI
|
69
|
Cai S, Han HJ and Kohwi-Shigematsu T:
Tissue-specific nuclear architecture and gene expression regulated
by SATB1. Nat Genet. 34:42–51. 2003. View
Article : Google Scholar : PubMed/NCBI
|
70
|
Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA,
Li ZQ and Jiang PC: Upregulation of SATB1 is associated with the
development and progression of glioma. J Transl Med. 10:1492012.
View Article : Google Scholar : PubMed/NCBI
|
71
|
Schuh M and Ellenberg J: Nuclear actin: a
lack of export allows formation of filaments. Curr Biol.
16:R321–R323. 2006. View Article : Google Scholar
|