ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFβ/Smad and Jagged/Notch signaling pathways in lens epithelial cells

  • Authors:
    • Xiaoyun Chen
    • Shaobi Ye
    • Wei Xiao
    • Wencong Wang
    • Lixia Luo
    • Yizhi Liu
  • View Affiliations

  • Published online on: April 4, 2014     https://doi.org/10.3892/ijmm.2014.1723
  • Pages: 1664-1670
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is the major pathological mechanism in anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), which are important causes of visual impairment. Extracellular signal-regulated kinase (ERK)1/2 pathway has been reported to play a major role in carcinogenesis, cancer metastasis and various fibrotic diseases. We hypothesized that ERK1/2 signaling can cross-interact with canonical transforming growth factor β (TGFβ)/Smad signaling and the Notch pathway, which subsequently contributes to LECs EMT. In this study, we demonstrated that ERK1/2 signaling was activated in TGFβ2‑induced EMT in human LECs, whereas the blockade of TGFβ2/Smad2/3 signaling with SB431542 did not inhibit the activation of ERK1/2 induced by TGFβ2. In addition, inactivation of ERK1/2 signaling with a specific MEK/ERK1/2 inhibitor, U0126, completely prevented the TGFβ2-induced upregulation of α-SMA, collagen type I, collagen type IV and fibronectin. We also demonstrated that inactivation of ERK1/2 signaling inhibited canonical TGFβ/Smad signaling, as well as the Jagged/Notch pathway. By contrast, blockade of the Notch pathway by DAPT inhibited the TGFβ2‑induced activation of ERK1/2 pathway in LECs. Thus, results of this study provide evidence for the complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of EMT in LECs. Inhibition of the ERK1/2 pathway may therefore have therapeutic value in the prevention and treatment of ASC and PCO.
View Figures
View References

Related Articles

Journal Cover

June-2014
Volume 33 Issue 6

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Chen X, Ye S, Xiao W, Wang W, Luo L and Liu Y: ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFβ/Smad and Jagged/Notch signaling pathways in lens epithelial cells. Int J Mol Med 33: 1664-1670, 2014.
APA
Chen, X., Ye, S., Xiao, W., Wang, W., Luo, L., & Liu, Y. (2014). ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFβ/Smad and Jagged/Notch signaling pathways in lens epithelial cells. International Journal of Molecular Medicine, 33, 1664-1670. https://doi.org/10.3892/ijmm.2014.1723
MLA
Chen, X., Ye, S., Xiao, W., Wang, W., Luo, L., Liu, Y."ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFβ/Smad and Jagged/Notch signaling pathways in lens epithelial cells". International Journal of Molecular Medicine 33.6 (2014): 1664-1670.
Chicago
Chen, X., Ye, S., Xiao, W., Wang, W., Luo, L., Liu, Y."ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFβ/Smad and Jagged/Notch signaling pathways in lens epithelial cells". International Journal of Molecular Medicine 33, no. 6 (2014): 1664-1670. https://doi.org/10.3892/ijmm.2014.1723