1
|
Schröder M and Kaufman RJ: The mammalian
unfolded protein response. Annu Rev Biochem. 74:739–789. 2005.
|
2
|
Hotamisligil GS: Endoplasmic reticulum
stress and the inflammatory basis of metabolic disease. Cell.
140:900–917. 2010. View Article : Google Scholar
|
3
|
Ron D and Walter P: Signal integration in
the endoplasmic reticulum unfolded protein response. Nat Rev Mol
Cell Biol. 8:519–529. 2007. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Nakagawa T, Zhu H, Morishima N, et al:
Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and
cytotoxicity by amyloid-beta. Nature. 403:98–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oyadomari S and Mori M: Roles of
CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ.
11:381–389. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tabas I and Ron D: Integrating the
mechanisms of apoptosis induced by endoplasmic reticulum stress.
Nat Cell Biol. 13:184–190. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ozcan L and Tabas I: Role of endoplasmic
reticulum stress in metabolic disease and other disorders. Annu Rev
Med. 63:317–328. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hotamisligil GS: Endoplasmic reticulum
stress and atherosclerosis. Nat Med. 16:396–399. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Back SH and Kaufman RJ: Endoplasmic
reticulum stress and type 2 diabetes. Annu Rev Biochem. 81:767–793.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kammoun HL, Chabanon H, Hainault I, et al:
GRP78 expression inhibits insulin and ER stress-induced SREBP-1c
activation and reduces hepatic steatosis in mice. J Clin Invest.
119:1201–1215. 2009. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Imai Y, Soda M and Takahashi R: Parkin
suppresses unfolded protein stress-induced cell death through its
E3 ubiquitin-protein ligase activity. J Biol Chem. 275:35661–35664.
2000. View Article : Google Scholar
|
12
|
Lee AS: GRP78 induction in cancer:
therapeutic and prognostic implications. Cancer Res. 67:3496–3499.
2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Weissman AM: Themes and variations on
ubiquitylation. Nat Rev Mol Cell Biol. 2:169–178. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kerscher O, Felberbaum R and Hochstrasser
M: Modification of proteins by ubiquitin and ubiquitin-like
proteins. Annu Rev Cell Dev Biol. 22:159–180. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hochstrasser M: Origin and function of
ubiquitin-like proteins. Nature. 458:422–429. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Komatsu M, Chiba T, Tatsumi K, et al: A
novel protein-conjugating system for Ufm1, a ubiquitin-fold
modifier. EMBO J. 23:1977–1986. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kang SH, Kim GR, Seong M, et al: Two novel
ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and
UfSP2. J Biol Chem. 282:5256–5262. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tatsumi K, Sou YS, Tada N, et al: A novel
type of E3 ligase for the Ufm1 conjugation system. J Biol Chem.
285:5417–5427. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lemaire K, Moura RF, Granvik M, et al:
Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect
pancreatic beta cells from ER stress-induced apoptosis. PLoS One.
6:e185172011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gannavaram S, Connelly PS, Daniels MP,
Duncan R, Salotra P and Nakhasi HL: Deletion of mitochondrial
associated ubiquitin fold modifier protein Ufm1 in Leishmania
donovani results in loss of beta-oxidation of fatty acids and
blocks cell division in the amastigote stage. Mol Microbiol.
86:187–198. 2012. View Article : Google Scholar
|
21
|
Azfer A, Niu J, Rogers LM, Adamski FM and
Kolattukudy PE: Activation of endoplasmic reticulum stress response
during the development of ischemic heart disease. Am J Physiol
Heart Circ Physiol. 291:H1411–H1420. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lu H, Yang Y, Allister EM, Wijesekara N
and Wheeler MB: The identification of potential factors associated
with the development of type 2 diabetes: a quantitative proteomics
approach. Mol Cell Proteomics. 7:1434–1451. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang Y, Zhang M, Wu J, Lei G and Li H:
Transcriptional regulation of the Ufm1 conjugation system in
response to disturbance of the endoplasmic reticulum homeostasis
and inhibition of vesicle trafficking. PLoS One. 7:e485872012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Wynn TA, Chawla A and Pollard JW:
Macrophage biology in development, homeostasis and disease. Nature.
496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Senokuchi T, Liang CP, Seimon TA, et al:
Forkhead transcription factors (FoxOs) promote apoptosis of
insulin-resistant macrophages during cholesterol-induced
endoplasmic reticulum stress. Diabetes. 57:2967–2976. 2008.
View Article : Google Scholar
|
26
|
Liang CP, Han S, Li G, Tabas I and Tall
AR: Impaired MEK signaling and SERCA expression promote ER stress
and apoptosis in insulin-resistant macrophages and are reversed by
exenatide treatment. Diabetes. 61:2609–2620. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Seimon TA, Nadolski MJ, Liao X, et al:
Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent
apoptosis in macrophages undergoing endoplasmic reticulum stress.
Cell Metab. 12:467–482. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tabas I: The role of endoplasmic reticulum
stress in the progression of atherosclerosis. Circ Res.
107:839–850. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu HF, Zhang HJ, Hu QX, et al: Altered
polarization, morphology, and impaired innate immunity germane to
resident peritoneal macrophages in mice with long-term type 2
diabetes. J Biomed Biotechnol. 2012:8670232012.PubMed/NCBI
|
30
|
Yoshida H: ER stress and diseases. FEBS J.
274:630–658. 2007. View Article : Google Scholar
|
31
|
Ozcan L and Tabas I: Pivotal role of
calcium/calmodulin-dependent protein kinase II in ER stress-induced
apoptosis. Cell Cycle. 9:223–224. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Timmins JM, Ozcan L, Seimon TA, et al:
Calcium/calmodulin-dependent protein kinase II links ER stress with
Fas and mitochondrial apoptosis pathways. J Clin Invest.
119:2925–2941. 2009. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Li G, Mongillo M, Chin KT, et al: Role of
ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate
receptor activity in endoplasmic reticulum stress-induced
apoptosis. J Cell Biol. 186:783–792. 2009. View Article : Google Scholar
|
34
|
Thorp E, Li G, Seimon TA, Kuriakose G, Ron
D and Tabas I: Reduced apoptosis and plaque necrosis in advanced
atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP.
Cell Metab. 9:474–481. 2009.
|
35
|
Tsukano H, Gotoh T, Endo M, et al: The
endoplasmic reticulum stress-C/EBP homologous protein
pathway-mediated apoptosis in macrophages contributes to the
instability of atherosclerotic plaques. Arterioscler Thromb Vasc
Biol. 30:1925–1932. 2010. View Article : Google Scholar
|
36
|
Song L, De Sarno P and Jope RS: Central
role of glycogen synthase kinase-3beta in endoplasmic reticulum
stress-induced caspase-3 activation. J Biol Chem. 277:44701–44708.
2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Morishima N, Nakanishi K, Takenouchi H,
Shibata T and Yasuhiko Y: An endoplasmic reticulum stress-specific
caspase cascade in apoptosis. Cytochrome c-independent activation
of caspase-9 by caspase-12. J Biol Chem. 277:34287–34294. 2002.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Tatsumi K, Yamamoto-Mukai H, Shimizu R, et
al: The Ufm1-activating enzyme Uba5 is indispensable for erythroid
differentiation in mice. Nat Commun. 2:1812011. View Article : Google Scholar : PubMed/NCBI
|