1
|
Gotto AM Jr and Brinton EA: Assessing low
levels of high-density lipoprotein cholesterol as a risk factor in
coronary heart disease: a working group report and update. J Am
Coll Cardiol. 43:717–724. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Breslow JL: Familial disorders of high
density lipoprotein metabolism. The Metabolic and Molecular Bases
of Inherited Disease. Scriver CR, Beaudet AL, Sly WS and Valle D:
7th editon. McGraw-Hill Publishing; New York: pp. 2031–2052.
1995
|
3
|
Assmann G, von Eckardstein A and Funke H:
High density lipoproteins, reverse transport of cholesterol, and
coronary artery disease. Insights from mutations. Circulation.
87(Suppl 4): III28–III34. 1993.PubMed/NCBI
|
4
|
Glomset JA: The plasma
lecithins:cholesterol acyltransferase reaction. J Lipid Res.
9:155–167. 1968.PubMed/NCBI
|
5
|
Howlader ZH, Kamiyama S, Shirakawa H, et
al: Detoxification of oxidized LDL by transferring its oxidation
product(s) to lecithin:cholesterol acyltransferase. Biochim Biophys
Res Commun. 291:758–763. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jonas A: Lecithin cholesterol
acyltransferase. Biochim Biophys Acta. 1529:245–256. 2000.
View Article : Google Scholar
|
7
|
Kuivenhoven JA, Pritchard H, Hill J, et
al: The molecular pathology of lecithin: cholesterol
acyltransferase (LCAT) deficiency syndromes. J Lipid Res.
38:191–205. 1997.PubMed/NCBI
|
8
|
Frohlich J, McLeod R, Pritchard PH, et al:
Plasma lipoprotein abnormalities in heterozygotes for familial
lecithin: cholesterol acyltransferase deficiency. Metabolism.
37:3–8. 1988. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kasid A, Rhyne J, Zeller K, et al: A novel
TC deletion resulting in Pro(260)-Stop in the human LCAT gene is
associated with a dominant effect on HDL-cholesterol.
Atherosclerosis. 156:127–132. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kunnen S and Van Eck M:
Lecithin:cholesterol acyltransferase: old friend or foe in
atherosclerosis? J Lipid Res. 53:1783–1799. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Asztalos BF, Schaefer EJ, Horvath KV, et
al: Role of LCAT in HDL remodeling: investigation of LCAT
deficiency states. J Lipid Res. 48:592–599. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Calabresi L, Pisciotta L, Costantin A, et
al: The molecular basis of lecithin:cholesterol acyltransferase
deficiency syndromes: a comprehensive study of molecular and
biochemical findings in 13 unrelated Italian families. Arterioscler
Thromb Vasc Biol. 25:1972–1978. 2005. View Article : Google Scholar
|
13
|
Charlton-Menys V, Pisciotta L, Durrington
PN, et al: Molecular characterization of two patients with severe
LCAT deficiency. Nephrol Dial Transplant. 22:2379–2382. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Bérard AM, Clerc M, Brewer B Jr and
Santamarina-Fojo S: A normal rate of cellular cholesterol removal
can be mediated by plasma from a patient with familial
lecithin-cholesterol acyltransferase (LCAT) deficiency. Clin Chim
Acta. 314:131–139. 2001.PubMed/NCBI
|
15
|
Hovingh GK, Hutten BA, Holleboom AG, et
al: Compromised LCAT function is associated with increased
atherosclerosis. Circulation. 112:879–884. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Calabresi L, Baldassarre D, Castelnuovo S,
et al: Functional lecithin: cholesterol acyltransferase is not
required for efficient atheroprotection in humans. Circulation.
120:628–635. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Medina-Urrutia A, Juarez-Rojas JG,
Martínez-Alvarado R, et al: High-density lipoprotein subclasses
distribution and composition in Mexican adolescents with low HDL
cholesterol and/or high triglyceride concentrations, and its
association with insulin and C-reactive protein. Atherosclerosis.
201:392–397. 2008. View Article : Google Scholar
|
18
|
Chen CH and Albers JJ: Characterization of
proteoliposomes containing apoprotein A-I: a new substrate for the
measurement of lecithin: cholesterol acyltransferase activity. J
Lipid Res. 23:680–691. 1982.PubMed/NCBI
|
19
|
Posadas-Sánchez R, Posadas-Romero C,
Zamora-González J, et al: LDL size and susceptibility to oxidation
in experimental nephrosis. Mol Cell Biochem. 220:61–68. 2001.
|
20
|
Eckerson HW, Wyte CM, LA and la Du BN: The
human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet.
35:1126–1138. 1983.PubMed/NCBI
|
21
|
De la Llera-Moya M, Atger V, Paul JL, et
al: A cell system for screening human serum for ability to promote
cellular cholesterol efflux. Relations between serum components and
efflux, esterification, and transfer. Arterioscler Thromb Vasc
Biol. 14:1056–1065. 1994.PubMed/NCBI
|
22
|
De la Llera-Moya M, Drazul-Schrader D,
Asztalos BF, et al: The ability to promote efflux via ABCA1
determines the capacity of serum specimens with similar
high-density lipoprotein cholesterol to remove cholesterol from
macrophages. Arterioscler Thromb Vasc Biol. 30:796–801.
2010.PubMed/NCBI
|
23
|
Stein JH, Korcarz CE, Hurst RT, et al;
American Society of Echocardiography Carotid Intima-Media Thickness
Task Force. Use of carotid ultrasound to identify subclinical
vascular disease and evaluate cardiovascular disease risk: a
consensus statement from the American Society of Echocardiography
Carotid Intima-Media Thickness Task Force. Endorsed by the Society
for Vascular Medicine. J Am Soc Echocardiogr. 21:93–111. 2008.
|
24
|
Mautner GC, Mautner SL, Froehlich J, et
al: Coronary artery calcification: assessment with electron beam CT
and histomorphometric correlation. Radiology. 192:619–623. 1994.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Miller SA, Dykes DD and Polesky HF: A
simple salting out procedure for extracting DNA from human
nucleated cells. Nucleic Acids Res. 16:12151988. View Article : Google Scholar : PubMed/NCBI
|
26
|
Argyropoulos G, Jenkins A, Klein RL, et
al: Transmission of two novel mutations in a pedigree with familial
lecithin:cholesterol acyltransferase deficiency: structure-function
relationships and studies in a compound heterozygous proband. J
Lipid Res. 39:1870–1876. 1998.
|
27
|
Posadas-Sánchez R, Posadas-Romero C,
Mendoza-Pérez E, et al: Cholesterol efflux and metabolic
abnormalities associated with low
high-density-lipoprotein-cholesterol and high triglycerides in
statin-treated coronary men with low density
lipoprotein-cholesterol <70 mg/dl. Am J Cardiol. 5:636–641.
2012.PubMed/NCBI
|
28
|
Santamarina-Fojo S, Hoeg JM, Assmann G, et
al: Lecithin Cholesterol Acyltransferase Deficiency and Fish Eye
Disease. The Metabolic and MolecularBases of Inherited Diseases.
Scriver CR, Beaud, Sly WS, Valle D, et al: McGraw-Hill Publishing;
New York: pp. 2817–2833. 2001
|
29
|
Rader DJ, Ikewaki K, Duverger N, et al:
Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II)
and high density lipoproteins containing ApoA-II in classic
lecithin: cholesterol acyltransferase deficiency and fish-eye
disease. J Clin Invest. 93:321–330. 1994. View Article : Google Scholar
|
30
|
Kelso GJ, Stuart WD, Richter RJ, et al:
Apolipoprotein J is associated with paraoxonase in human plasma.
Biochemistry. 33:832–839. 1994. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mackness MI, Arrol S and Durrington PN:
Paraoxonase prevents accumulation of lipoperoxides in low-density
lipoprotein. FEBS Lett. 286:152–154. 1991. View Article : Google Scholar : PubMed/NCBI
|
32
|
Watson AD, Berliner JA, Hama SY, et al:
Protective effect of high density lipoprotein associated
paraoxonase. Inhibition of the biological activity of minimally
oxidized low density lipoprotein. J Clin Invest. 96:2882–2891.
1995. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mackness MI, Walker CH and Carlson LA: Low
A-esterase activity in serum of patients with fish-eye disease.
Clin Chem. 33:587–588. 1987.PubMed/NCBI
|
34
|
Huang Y, von Eckardstein A, Wu S, et al: A
plasma lipoprotein containing only apolipoprotein E and with gamma
mobility on electrophoresis releases cholesterol from cells. Proc
Natl Acad Sci USA. 91:1834–1838. 1994. View Article : Google Scholar : PubMed/NCBI
|
35
|
Durrington PN, Mackness B and Mackness MI:
The hunt for nutritional and pharmacological modulators of
paraoxonase. Arterioscler Thromb Vasc Biol. 22:1248–1250. 2002.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Ferré N, Camps J, Fernández-Ballart J, et
al: Regulation of serum paraoxonase activity by genetic,
nutritional, and lifestyle factors in the general population. Clin
Chem. 49:1491–1497. 2003.PubMed/NCBI
|
37
|
Calabresi L, Favari E, Moleri E, et al:
Functional LCAT is not required for macrophage cholesterol efflux
to human serum. Atherosclerosis. 204:141–146. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Nishiwaki M, Ikewaki K, Bader G, et al:
Human lecithin:cholesterol acyltransferase deficiency: in vivo
kinetics of low-density lipoprotein and lipoprotein-X. Arterioscler
Thromb Vasc Biol. 26:1370–1375. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Savel J, Lafitte M, Pucheu Y, et al: Very
low levels of HDL cholesterol and atherosclerosis, a variable
relationship-a review of LCAT deficiency. Vasc Health Risk Manag.
8:357–361. 2012.PubMed/NCBI
|
40
|
Duivenvoorden R, Holleboom AG, van den
Bogaard B, et al: Carriers of lecithin cholesterol acyltransferase
gene mutations have accelerated atherogenesis as assessed by
carotid 3.0-T magnetic resonance imaging. J Am Coll Cardiol.
58:2481–2487. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
El Harchaoui K, Arsenault BJ, Franssen R,
et al: High-density lipoprotein particle size and concentration and
coronary risk. Ann Intern Med. 150:84–93. 2009.PubMed/NCBI
|
42
|
Syvänne M, Castro G, Dengremont C, et al:
Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of
subjects with or without coronary artery disease and
non-insulin-dependent diabetes: importance of LpA-I:A-II particles
and phospholipid transfer protein. Atherosclerosis. 127:245–253.
1996.
|