FERM family proteins and their importance in cellular movements and wound healing (Review)
- Authors:
- David C. Bosanquet
- Lin Ye
- Keith G. Harding
- Wen G. Jiang
-
Affiliations: Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK - Published online on: May 8, 2014 https://doi.org/10.3892/ijmm.2014.1775
- Pages: 3-12
This article is mentioned in:
Abstract
Weigelt B, Peterse JL and van ’t Veer LJ: Breast cancer metastasis: markers and models. Nat Rev Cancer. 5:591–602. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mehlen P and Puisieux A: Metastasis: a question of life or death. Nat Rev Cancer. 6:449–458. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang J and Weinberg RA: Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI | |
Arnoux V, Come C, Kusewitt D, Hudson L and Savagner P: Cutaneous Wound Reepithelializaton: A partial and reversible EMT. Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition. Savagner P: Springer; Berlin: pp. 111–134. 2005, View Article : Google Scholar | |
Yan CL, Grimm WA, Garner WL, et al: Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol. 176:2247–2258. 2010. View Article : Google Scholar : PubMed/NCBI | |
Virchow R: Aetiologie der neoplastischen Geschwulste/ Pathogenie der neoplastischen Geschwulste. Die Krankhaften Geschwülste. Verlag von August Hirschwald; Berlin: pp. 57–101. 1863 | |
Dolberg DS, Hollingsworth R, Hertle M and Bissell MJ: Wounding and its role in RSV-mediated tumor formation. Science. 230:676–678. 1985. View Article : Google Scholar : PubMed/NCBI | |
Martinsgreen M, Boudreau N and Bissell MJ: Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus. Cancer Res. 54:4334–4341. 1994.PubMed/NCBI | |
Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI | |
Schafer M and Werner S: Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Bio. 9:628–638. 2008. View Article : Google Scholar : PubMed/NCBI | |
Antsiferova M and Werner S: The bright and the dark sides of activin in wound healing and cancer. J Cell Sci. 125:3929–3937. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grose R: Common ground in the transcriptional profiles of wounds and tumors. Genome Biol. 5:2282004. View Article : Google Scholar : PubMed/NCBI | |
Pedersen TX, Leethanakul C, Patel V, et al: Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma. Oncogene. 22:3964–3976. 2003. View Article : Google Scholar | |
Chang HY, Sneddon JB, Alizadeh AA, et al: Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2:72004. View Article : Google Scholar | |
Eming SA, Brachvogel B, Odorisio T and Koch M: Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem. 42:115–170. 2007. View Article : Google Scholar : PubMed/NCBI | |
Midwood KS, Williams LV and Schwarzbauer JE: Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 36:1031–1037. 2004. View Article : Google Scholar : PubMed/NCBI | |
Martin P: Wound healing--aiming for perfect skin regeneration. Science. 276:75–81. 1997. View Article : Google Scholar : PubMed/NCBI | |
Pollard TD and Borisy GG: Cellular motility driven by assembly and disassembly of actin filaments. Cell. 112:453–465. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mellman I and Nelson WJ: Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol. 9:833–845. 2008. View Article : Google Scholar : PubMed/NCBI | |
Small JV, Stradal T, Vignal E and Rottner K: The lamellipodium: where motility begins. Trends Cell Biol. 12:112–120. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bugyi B and Carlier MF: Control of actin filament treadmilling in cell motility. Annu Rev Biophys. 39:449–470. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Zhang Y, Ye L and Jiang WG: The FERM family proteins in cancer invasion and metastasis. Frontiers in bioscience: a journal and virtual library. 16:1536–1550. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chishti AH, Kim AC, Marfatia SM, et al: The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci. 23:281–282. 1998. View Article : Google Scholar : PubMed/NCBI | |
Leto TL and Marchesi VT: A structural model of human erythrocyte protein 4.1. J Biol Chem. 259:4603–4608. 1984.PubMed/NCBI | |
Tyler JM, Hargreaves WR and Branton D: Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1. Proc Natl Acad Sci USA. 76:5192–5196. 1979. View Article : Google Scholar | |
Shiffer KA and Goodman SR: Protein 4.1: its association with the human erythrocyte membrane. Proc Natl Acad Sci USA. 81:4404–4408. 1984. View Article : Google Scholar : PubMed/NCBI | |
Bretscher A: Purification of the intestinal microvillus cytoskeletal proteins villin, fimbrin, and ezrin. Methods Enzymol. 134:24–37. 1986. View Article : Google Scholar : PubMed/NCBI | |
Tsukita S and Hieda Y: A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J Cell Biol. 108:2369–2382. 1989. View Article : Google Scholar : PubMed/NCBI | |
Lankes WT and Furthmayr H: Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc Natl Acad Sci USA. 88:8297–8301. 1991. View Article : Google Scholar : PubMed/NCBI | |
Jiang WG, Hiscox S, Singhrao SK, et al: Induction of tyrosine phosphorylation and translocation of ezrin by hepatocyte growth factor/scatter factor. Biochem Biophys Res Commun. 217:1062–1069. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sun CX, Robb VA and Gutmann DH: Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J Cell Sci. 115:3991–4000. 2002. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi K, Kawashima A, Nagafuchi A and Tsukita S: Structural diversity of band 4.1 superfamily members. J Cell Sci. 107:1921–1928. 1994. | |
Conboy J, Kan YW, Shohet SB and Mohandas N: Molecular cloning of protein 4.1, a major structural element of the human erythrocyte membrane skeleton. Proc Natl Acad Sci USA. 83:9512–9516. 1986. View Article : Google Scholar : PubMed/NCBI | |
Smith WJ, Nassar N, Bretscher A, Cerione RA and Karplus PA: Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions. J Biol Chem. 278:4949–4956. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shimizu T, Seto A, Maita N, Hamada K, Tsukita S and Hakoshima T: Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J Biol Chem. 277:10332–10336. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pearson MA, Reczek D, Bretscher A and Karplus PA: Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell. 101:259–270. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gautreau A, Louvard D and Arpin M: ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr Opin Cell Biol. 14:104–109. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bretscher A: Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol. 97:425–432. 1983. View Article : Google Scholar : PubMed/NCBI | |
Franck Z, Gary R and Bretscher A: Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. J Cell Sci. 105:219–231. 1993.PubMed/NCBI | |
Sato N, Funayama N, Nagafuchi A, Yonemura S and Tsukita S and Tsukita S: A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J Cell Sci. 103:131–143. 1992.PubMed/NCBI | |
Louvet-Vallee S: ERM proteins: From cellular architecture to cell signaling. Biol Cell. 92:305–316. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nowak D, Mazur AJ, Popow-Wozniak A, Radwanska A, Mannherz HG and Malicka-Blaszkiewicz M: Subcellular distribution and expression of cofilin and ezrin in human colon adenocarcinoma cell lines with different metastatic potential. Eur J Histochem. 54:142010. View Article : Google Scholar : PubMed/NCBI | |
Sarrio D, Rodriguez-Pinilla SM, Dotor A, Calero F, Hardisson D and Palacios J: Abnormal ezrin localization is associated with clinicopathological features in invasive breast carcinomas. Breast Cancer Res Tr. 98:71–79. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lankes W, Griesmacher A, Grunwald J, Schwartzalbiez R and Keller R: A heparin-binding protein involved in inhibition of smooth-muscle cell proliferation. Biochem J. 251:831–842. 1988.PubMed/NCBI | |
Amieva MR and Furthmayr H: Subcellular localization of moesin in dynamic filopodia, retraction fibers, and other structures involved in substrate exploration, attachment, and cell-cell contacts. Exp Cell Res. 219:180–196. 1995. View Article : Google Scholar | |
Lallemand D and Arpin M: Moesin/ezrin: a specific role in cell metastasis? Pigm Cell Melanoma Res. 23:6–7. 2010. View Article : Google Scholar : PubMed/NCBI | |
He M, Cheng Y, Li W, et al: Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade. BMC Cancer. 10:2010.PubMed/NCBI | |
Amieva MR, Wilgenbus KK and Furthmayr H: Radixin is a component of hepatocyte microvilli in situ. Exp Cell Res. 210:140–144. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hamada K, Shimizu T, Matsui T, Tsukita S and Hakoshima T: Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. Embo J. 19:4449–4462. 2000. View Article : Google Scholar : PubMed/NCBI | |
Loebrich S, Bahring R, Katsuno T, Tsukita S and Kneussel M: Activated radixin is essential for GABAA receptor alpha5 subunit anchoring at the actin cytoskeleton. EMBO J. 25:987–999. 2006. View Article : Google Scholar : PubMed/NCBI | |
Elliott BE, Meens JA, SenGupta SK, Louvard D and Arpin M: The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. Breast Cancer Research. 7:365–373. 2005. View Article : Google Scholar : PubMed/NCBI | |
Khanna C, Wan XL, Bose S, et al: The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 10:182–186. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yu YL, Khan J, Khanna C, Helman L, Meltzer PS and Merlino G: Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med. 10:175–181. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kang YK, Hong SW, Lee H and Kim WH: Prognostic implications of ezrin expression in human hepatocellular carcinoma. Mol Carcinog. 49:798–804. 2010.PubMed/NCBI | |
Deng XY, Tannehill-Gregg SH, Nadella MVP, et al: Parathyroid hormone-related protein and ezrin are up-regulated in human lung cancer bone metastases. Clin Exp Metastas. 24:107–119. 2007. View Article : Google Scholar : PubMed/NCBI | |
Meng YX, Lu ZH, Yu SN, Zhang QA, Ma YH and Chen J: Ezrin promotes invasion and metastasis of pancreatic cancer cells. J Transl Med. 8:2010. | |
Federici C, Brambilla D, Lozupone F, et al: Pleiotropic function of ezrin in human metastatic melanomas. Int J Cancer. 124:2804–2812. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhou BB, Leng J, Hu M, et al: Ezrin is a key molecule in the metastasis of MOLT4 cells induced by CCL25/CCR9. Leuk Res. 34:769–776. 2010. View Article : Google Scholar : PubMed/NCBI | |
Morales FC, Molina JR, Hayashi Y and Georgescu MM: Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma. Neuro Oncol. 12:528–539. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cui YZ, Wu JM, Zong MJ, et al: Proteomic profiling in pancreatic cancer with and without lymph node metastasis. Int J Cancer. 124:1614–1621. 2009. View Article : Google Scholar : PubMed/NCBI | |
Estecha A, Sanchez-Martin L, Puig-Kroger A, et al: Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion. J Cell Sci. 122:3492–3501. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jensen PV and Larsson LI: Actin microdomains on endothelial cells: association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing. Histochem Cell Biol. 121:361–369. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ng T, Parsons M, Hughes WE, et al: Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J. 20:2723–2741. 2001. View Article : Google Scholar : PubMed/NCBI | |
Haas MA, Vickers JC and Dickson TC: Binding partners L1 cell adhesion molecule and the ezrin-radixin-moesin (ERM) proteins are involved in development and the regenerative response to injury of hippocampal and cortical neurons. Eur J Neurosci. 20:1436–1444. 2004. View Article : Google Scholar : PubMed/NCBI | |
Haas MA, Vickers JC and Dickson TC: Rho kinase activates ezrin-radixin-moesin (ERM) proteins and mediates their function in cortical neuron growth, morphology and motility in vitro. J Neurosci Res. 85:34–46. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsuda M, Makino Y, Iwahara T, et al: Crk associates with ERM proteins and promotes cell motility toward hyaluronic acid. J Biol Chem. 279:46843–46850. 2004. View Article : Google Scholar : PubMed/NCBI | |
Crepaldi T, Gautreau A, Comoglio PM, Louvard D and Arpin M: Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol. 138:423–434. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto S, Amaya F, Matsuyama H, et al: Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin. Am J Physiol Lung Cell Mol Physiol. 295:L566–L574. 2008. View Article : Google Scholar : PubMed/NCBI | |
Okayama T, Kikuchi S, Ochiai T, et al: Attenuated response to liver injury in moesin-deficient mice: impaired stellate cell migration and decreased fibrosis. Biochim Biophys Acta. 1782:542–548. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takakuwa Y: Regulation of red cell membrane protein interactions: implications for red cell function. Curr Opin Hematol. 8:80–84. 2001. View Article : Google Scholar : PubMed/NCBI | |
Holzwarth G, Yu J and Steck TL: Heterogeneity in the conformation of different protein fractions from the human erythrocyte membrane. J Supramol Struct. 4:161–168. 1976. View Article : Google Scholar : PubMed/NCBI | |
Diakowski W, Grzybek M and Sikorski AF: Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem Cyto. 44:231–248. 2006.PubMed/NCBI | |
Mattagajasingh SN, Huang SC, Hartenstein JS and Benz EJ: Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem. 275:30573–30585. 2000. View Article : Google Scholar | |
Yamakawa H, Ohara R, Nakajima D, Nakayama M and Ohara O: Molecular characterization of a new member of the protein 4.1 family (brain 4.1) in rat brain. Mol Brain Res. 74:247. 1999. | |
Tchernia G, Mohandas N and Shohet SB: Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. J Clin Invest. 68:454–460. 1981. View Article : Google Scholar | |
Shi ZT, Afzal V, Coller B, et al: Protein 4.1R-deficient mice are viable but have erythroid membrane skeleton abnormalities. J Clin Invest. 103:331–340. 1999. View Article : Google Scholar : PubMed/NCBI | |
Salomao M, Zhang XH, Yang Y, et al: Protein 4.1R-dependent multiprotein complex: New insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci USA. 105:8026–8031. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nunomura W and Takakuwa Y: Regulation of protein 4.1R interactions with membrane proteins by Ca2+ and calmodulin. Front Biosci. 11:1522–1539. 2006. | |
Pinder JC, Gardner B and Gratzer WB: Interaction of protein 4.1 with the red cell membrane: effects of phosphorylation by protein kinase C. Biochem Biophys Res Commun. 210:478–482. 1995. View Article : Google Scholar : PubMed/NCBI | |
Horne WC, Prinz WC and Tang EK: Identification of two cAMP-dependent phosphorylation sites on erythrocyte protein 4.1. Biochim Biophys Acta. 1055:87–92. 1990. View Article : Google Scholar : PubMed/NCBI | |
Eder PS, Soong CJ and Tao M: Phosphorylation reduces the affinity of protein 4.1 for spectrin. Biochemistry. 25:1764–1770. 1986. View Article : Google Scholar | |
Krauss SW, Larabell CA, Lockett S, et al: Structural protein 4.1 in the nucleus of human cells: dynamic rearrangements during cell division. J Cell Biol. 137:275–289. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mattagajasingh SN, Huang SC, Hartenstein JS, Snyder M, Marchesi VT and Benz EJ: A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein. J Cell Biol. 145:29–43. 1999. View Article : Google Scholar : PubMed/NCBI | |
Perez-Ferreiro CM, Luque CM and Correas I: 4.1R proteins associate with interphase microtubules in human T cells: a 4.1R constitutive region is involved in tubulin binding. J Biol Chem. 276:44785–44791. 2001. View Article : Google Scholar : PubMed/NCBI | |
Krauss SW, Heald R, Lee G, et al: Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro. J Biol Chem. 277:44339–44346. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yang SM, Guo XH, Debnath G, Mohandas N and An XL: Protein 4.1R links E-cadherin/beta-catenin complex to the cytoskeleton through its direct interaction with beta-catenin and modulates adherens junction integrity. Biochim Biophys Acta. 1788:1458–1465. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Hughes RA, Baines AJ, Conboy J, Mohandas N and An X: Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of beta1 integrin. J Cell Sci. 124:2478–2487. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Sáenz A, Kremer L, Alonso MA, Millan J and Correas I: Protein 4.1R regulates cell migration and IQGAP1 recruitment to the leading edge. J Cell Sci. 124:2529–2538. 2011.PubMed/NCBI | |
Hashimoto Y, Shindo-Okada N, Tani M, Takeuchi K, Toma H and Yokota J: Identification of genes differentially expressed in association with metastatic potential of K-1735 murine melanoma by messenger RNA differential display. Cancer Res. 56:5266–5271. 1996.PubMed/NCBI | |
Shimizu K, Nagamachi Y, Tani M, et al: Molecular cloning of a novel NF2/ERM/4.1 superfamily gene, ehm2, that is expressed in high-metastatic K1735 murine melanoma cells. Genomics. 65:113–120. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chauhan S, Pandey R, Way JF, et al: Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation. Biochem Biophys Res Commun. 310:421–432. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cress AE and Nagle RB: Cell Adhesion and Cytoskeletal Molecules in Metastasis. (Series: Cancer Metastasis - Biology and Treatment). 9. Springer; Dordrecht: 2006, View Article : Google Scholar | |
Hoover KB and Bryant PJ: Drosophila Yurt is a new protein-4.1-like protein required for epithelial morphogenesis. Dev Genes Evol. 212:230–238. 2002. View Article : Google Scholar | |
Wang J, Cai Y, Penland R, Chauhan S, Miesfeld RL and Ittmann M: Increased expression of the metastasis-associated gene Ehm2 in prostate cancer. Prostate. 66:1641–1652. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schulz WA, Ingenwerth M, Djuidje CE, Hader C, Rahnenfuhrer J and Engers R: Changes in cortical cytoskeletal and extracellular matrix gene expression in prostate cancer are related to oncogenic ERG deregulation. BMC Cancer. 10:5052010. View Article : Google Scholar : PubMed/NCBI | |
Dhanasekaran SM, Barrette TR, Ghosh D, et al: Delineation of prognostic biomarkers in prostate cancer. Nature. 412:822–826. 2001. View Article : Google Scholar : PubMed/NCBI | |
Luo JH, Yu YP, Cieply K, et al: Gene expression analysis of prostate cancers. Mol Carcinog. 33:25–35. 2002. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Duggan DJ, Chen Y, et al: Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61:4683–4688. 2001.PubMed/NCBI | |
Yu H, Ye L, Mansel RE, Zhang Y and Jiang WG: Clinical implications of the influence of Ehm2 on the aggressiveness of breast cancer cells through regulation of matrix metalloproteinase-9 expression. Mol Cancer Res. 8:1501–1512. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bosanquet DC, Ye L, Harding KG and Jiang WG: Expressed in high metastatic cells (Ehm2) is a positive regulator of keratinocyte adhesion and motility: The implication for wound healing. J Dermatol Sci. 71:115–121. 2013. View Article : Google Scholar : PubMed/NCBI | |
Reid BJ, Li X, Galipeau PC and Vaughan TL: Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer. 10:87–101. 2010. | |
De Minicis S, Marzioni M, Saccomanno S, et al: Cellular and molecular mechanisms of hepatic fibrogenesis leading to liver cancer. Transl Gastrointest Cancer. 1:88–94. 2011. | |
Mountford RA, Brown P, Salmon PR, Alvarenga C, Neumann CS and Read AE: Gastric cancer detection in gastric ulcer disease. Gut. 21:9–17. 1980. View Article : Google Scholar : PubMed/NCBI | |
Jess T, Rungoe C and Peyrin-Biroulet L: Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 10:639–645. 2012. View Article : Google Scholar : PubMed/NCBI | |
Malka D, Hammel P, Maire F, et al: Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut. 51:849–852. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kerr-Valentic MA, Samimi K, Rohlen BH, Agarwal JP and Rockwell WB: Marjolin’s ulcer: modern analysis of an ancient problem. Plast Reconstr Surg. 123:184–191. 2009. | |
Pasternack GR, Anderson RA, Leto TL and Marchesi VT: Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J Biol Chem. 260:3676–3683. 1985.PubMed/NCBI | |
Hemming NJ, Anstee DJ, Mawby WJ, Reid ME and Tanner MJ: Localization of the protein 4.1-binding site on human erythrocyte glycophorins C and D. Biochem J. 299:191–196. 1994. | |
Marfatia SM, Leu RA, Branton D and Chishti AH: Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein. J Biol Chem. 270:715–719. 1995. View Article : Google Scholar : PubMed/NCBI | |
Reczek D, Berryman M and Bretscher A: Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol. 139:169–179. 1997. View Article : Google Scholar : PubMed/NCBI | |
Nunomura W, Takakuwa Y, Tokimitsu R, Krauss SW, Kawashima M and Mohandas N: Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. J Biol Chem. 272:30322–30328. 1997. View Article : Google Scholar | |
Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A and Carpen O: Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem. 273:21893–21900. 1998. View Article : Google Scholar : PubMed/NCBI | |
Darmellah A, Rucker-Martin C and Feuvray D: ERM proteins mediate the effects of Na+/H+ exchanger (NHE1) activation in cardiac myocytes. Cardiovasc Res. 81:294–300. 2009. View Article : Google Scholar : PubMed/NCBI | |
Niggli V, Andreoli C, Roy C and Mangeat P: Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett. 376:172–176. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Kadowaki K, Lazarides E and Sobue K: Ca2(+)-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1. J Biol Chem. 266:1134–1140. 1991. | |
Weinman EJ, Steplock D, Wade JB and Shenolikar S: Ezrin binding domain-deficient NHERF attenuates cAMP-mediated inhibition of Na(+)/H(+) exchange in OK cells. Am J Physiol Renal Physiol. 281:F374–F380. 2001.PubMed/NCBI |