1
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lane NE and Rehman Q: Osteoporosis in the
rheumatic disease patient. Lupus. 11:675–679. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zambonin-Zallone A, Teti A, Carano A and
Marchisio PC: The distribution of podosomes in osteoclasts cultured
on bone laminae: effect of retinol. J Bone Miner Res. 3:517–523.
1988. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jurdic P, Saltel F, Chabadel A and
Destaing O: Podosome and sealing zone: specificity of the
osteoclast model. Eur J Cell Biol. 85:195–202. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ory S, Brazier H, Pawlak G and Blangy A:
Rho GTPases in osteoclasts: orchestrators of podosome arrangement.
Eur J Cell Biol. 87:469–477. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Luxenburg C, Geblinger D, Klein E, et al:
The architecture of the adhesive apparatus of cultured osteoclasts:
from podosome formation to sealing zone assembly. PLoS One.
2:e1792007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nesbitt SA and Horton MA: Trafficking of
matrix collagens through bone-resorbing osteoclasts. Science.
276:266–269. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Anderegg F, Geblinger D, Horvath P, et al:
Substrate adhesion regulates sealing zone architecture and dynamics
in cultured osteoclasts. PLoS One. 6:e285832011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Saltel F, Destaing O, Bard F, Eichert D
and Jurdic P: Apatite-mediated actin dynamics in resorbing
osteoclasts. Mol Biol Cell. 15:5231–5241. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Luxenburg C, Parsons JT, Addadi L and
Geiger B: Involvement of the Src-cortactin pathway in podosome
formation and turnover during polarization of cultured osteoclasts.
J Cell Sci. 119:4878–4888. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Akisaka T, Yoshida H and Suzuki R: The
ruffled border and attachment regions of the apposing membrane of
resorbing osteoclasts as visualized from the cytoplasmic face of
the membrane. J Electron Microsc (Tokyo). 55:53–61. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Schachtner H, Calaminus SD, Thomas SG and
Machesky LM: Podosomes in adhesion, migration, mechanosensing and
matrix remodeling. Cytoskeleton (Hoboken). 70:572–589. 2013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Chiusaroli R, Knobler H, Luxenburg C, et
al: Tyrosine phosphatase epsilon is a positive regulator of
osteoclast function in vitro and in vivo. Mol Biol Cell.
15:234–244. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Itzstein C, Coxon FP and Rogers MJ: The
regulation of osteoclast function and bone resorption by small
GTPases. Small GTPases. 2:117–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vega FM and Ridley AJ: SnapShot: Rho
family GTPases. Cell. 129:14302007.PubMed/NCBI
|
16
|
Coxon FP and Rogers MJ: The role of
prenylated small GTP-binding proteins in the regulation of
osteoclast function. Calcif Tissue Int. 72:80–84. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rossman KL, Der CJ and Sondek J: GEF means
go: turning on RHO GTPases with guanine nucleotide-exchange
factors. Nat Rev Mol Cell Biol. 6:167–180. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Brazier H, Stephens S, Ory S, Fort P,
Morrison N and Blangy A: Expression profile of RhoGTPases and
RhoGEFs during RANKL-stimulated osteoclastogenesis: identification
of essential genes in osteoclasts. J Bone Miner Res. 21:1387–1398.
2006. View Article : Google Scholar
|
19
|
Vives V, Laurin M, Cres G, et al: The Rac1
exchange factor Dock5 is essential for bone resorption by
osteoclasts. J Bone Miner Res. 26:1099–1110. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lee JH, Katakai T, Hara T, Gonda H, Sugai
M and Shimizu A: Roles of p-ERM and Rho-ROCK signaling in
lymphocyte polarity and uropod formation. J Cell Biol. 167:327–337.
2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nakagawa O, Fujisawa K, Ishizaki T, Saito
Y, Nakao K and Narumiya S: ROCK-I and ROCK-II, two isoforms of
Rho-associated coiled-coil forming protein serine/threonine kinase
in mice. FEBS Lett. 392:189–193. 1996. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang J, Chen TY, Qin S, Duan Y and Wang G:
Inhibitory effect of metformin on bone metastasis of cancer via
OPG/RANKL/RANK system. Med Hypotheses. 81:805–806. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hofbauer LC, Kühne CA and Viereck V: The
OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet
Neuronal Interact. 4:268–275. 2004.PubMed/NCBI
|
24
|
Shiotani A, Takami M, Itoh K, Shibasaki Y
and Sasaki T: Regulation of osteoclast differentiation and function
by receptor activator of NFkB ligand and osteoprotegerin. Anat Rec.
268:137–146. 2002. View
Article : Google Scholar : PubMed/NCBI
|
25
|
O’Brien EA, Williams JH and Marshall MJ:
Osteoprotegerin is produced when prostaglandin synthesis is
inhibited causing osteoclasts to detach from the surface of mouse
parietal bone and attach to the endocranial membrane. Bone.
28:208–214. 2001.
|
26
|
Song RL, Liu XZ, Zhu JQ, et al: RhoV
mediated the apoptosis of RAW2647 macrophages caused by osteoclast
differentiation. Mol Med Rep. (In press).
|
27
|
Borthwick KJ, Kandemir N, Topaloglu R, et
al: A phenocopy of CAII deficiency: a novel genetic explanation for
inherited infantile osteopetrosis with distal renal tubular
acidosis. J Med Genet. 40:115–121. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Everts V, Delaissé JM, Korper W, Niehof A,
Vaes G and Beertsen W: Degradation of collagen in the
bone-resorbing compartment underlying the osteoclast involves both
cysteine-proteinases and matrix metalloproteinases. J Cell Physiol.
150:221–231. 1992. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dovas A, Gevrey JC, Grossi A, Park H,
Abou-Kheir W and Cox D: Regulation of podosome dynamics by WASp
phosphorylation: implication in matrix degradation and chemotaxis
in macrophages. J Cell Sci. 122:3873–3882. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gringel A, Walz D, Rosenberger G, et al:
PAK4 and alphaPIX determine podosome size and number in macrophages
through localized actin regulation. J Cell Physiol. 209:568–579.
2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guegan F, Tatin F, Leste-Lasserre T,
Drutel G, Genot E and Moreau V: p190B RhoGAP regulates
endothelial-cell-associated proteolysis through MT1-MMP and MMP2. J
Cell Sci. 121:2054–2061. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Osiak AE, Zenner G and Linder S:
Subconfluent endothelial cells form podosomes downstream of
cytokine and RhoGTPase signaling. Exp Cell Res. 307:342–353. 2005.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Tatin F, Grise F, Reuzeau E, Genot E and
Moreau V: Sodium fluoride induces podosome formation in endothelial
cells. Biol Cell. 102:489–498. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Song RL, Liu XZ, Zhu JQ, et al: New roles
of filopodia and podosomes in the differentiation and fusion
process of osteoclasts. Genet Mol Res. 13:4776–4787. 2014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Schmidt A and Hall A: Guanine nucleotide
exchange factors for Rho GTPases: turning on the switch. Genes Dev.
16:1587–1609. 2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Schofield AV and Bernard O: Rho-associated
coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem
Mol Biol. 48:301–316. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zeidan A, Paylor B, Steinhoff KJ, et al:
Actin cytoskeleton dynamics promotes leptin-induced vascular smooth
muscle hypertrophy via RhoA/ROCK- and phosphatidylinositol
3-kinase/protein kinase B-dependent pathways. J Pharmacol Exp Ther.
322:1110–1116. 2007. View Article : Google Scholar
|